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WELL POSEDNESS AND CONTROL OF SEMILINEAR WAVE EQUATIONS

WITH ITERATED LOGARITHMS ∗
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Abstract. Motivated by a classical work of Erdős we give rather precise necessary and sufficient
growth conditions on the nonlinearity in a semilinear wave equation in order to have global existence
for all initial data. Then we improve some former exact controllability theorems of Imanuvilov and
Zuazua.

Résumé. Motivé par un travail classique d’Erdős on donne des conditions nécessaires et suffisantes
de croissance de la non linéarité dans une équation des ondes semilinéaire pour l’existence des solu-
tions globales pour toutes les données initiales. Ensuite on améliore certains théorèmes antérieurs de
contrôlabilité exacte de Imanuvilov et de Zuazua.
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1. Introduction and formulation of the main results

Consider the problem 
u′′ −∆u− f(u) = 0 in Ω× (0, T ),

u = 0 on Γ× (0, T ),

u(0) = u0 and u′(0) = u1 in Ω,

(1.1)

where

• Ω is a nonempty bounded open domain in RN having a boundary Γ of class C2;
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1 Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy; e-mail:
cannarsa@axp.mat.uniroma2.it
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Italy. e-mail: loreti@dmmm.uniroma1.it

c© EDP Sciences, SMAI 1999



38 P. CANNARSA, V. KOMORNIK AND P. LORETI

• f : R→ R is a given function of class C1;
• T is a given positive number.

For the existence of a unique maximal solution

u ∈ C([0, T ′];H1
0 (Ω)) ∩ C1([0, T ′];L2(Ω)), 0 < T ′ ≤ T,

in case N ≥ 2 we need the additional property{
|f ′(s)| ≤ c(1 + |s|2/(N−2)) if N ≥ 3,

|f ′(s)| ≤ c(1 + |s|α) for some finite α if N = 2
(1.2)

for all s ∈ R. No condition of this type is needed if N = 1. We refer, e.g., to [2], Chapter 6, for proof.
First we study the existence of a (unique) global solution

u ∈ C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) (1.3)

for every given

u0 ∈ H
1
0 (Ω) and u1 ∈ L

2(Ω), (1.4)

without any sign condition on f . We need another growth assumption on f . For this we introduce the primitive
F of f defined by

F (s) =

∫ s

0

f(z) dz, s ∈ R.

Furthermore, motivated by [3], let us introduce the iterated logarithm functions logj defined by the formulae

log0 s := s and logj s := log(logj−1 s), j = 1, 2, . . .

Define ej by the equation logj ej = 2.

Theorem 1.1. Let f : R → R be a function of class C1. Assume (1.2) if N ≥ 2. Furthermore, assume that
there exist a positive integer k and a number β > 0 such that

|F (s)| ≤ β
k∏
j=0

log2
j |s| for all |s| > ek. (1.5)

Then for every u0, u1 satisfying (1.4) the problem (1.1) has a unique global solution satisfying (1.3).

Our proof will show that the quantity∫
Ω

(u′(t))2 + |∇u(t)|2 − 2F (u(t)) dx

does not depend on t ∈ [0, T ].
We will also show that the condition (1.5) is essentially optimal.

Theorem 1.2. Assume that there exist a positive integer k, a real number p > 2 and two positive numbers α0

and c such that

F (s) ≥ α0

k−1∏
j=0

log2
j s

 logpk s for all s > c. (1.6)
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Then there exist initial data

u0 ∈ H
1
0 (Ω) and u1 ∈ L

2(Ω)

such that (1.1) has no global solution satisfying (1.3).

Remarks.

• Theorem 1.1 was first proved by Cazenave and Haraux [1] in the case where f is a constant multiple of the
function s log s. They considered the case Ω = RN , but their method equally works for bounded domains.
• Subsequently Zuazua [10] noticed that their method also applies under the weaker assumption (1.5) for
k = 1, and he also proved Theorem 1.2 for k = 1.
• One can readily verify that if

f(s) = O

|s| k∏
j=1

log2
j |s|

 as |s| → ∞,

then condition (1.5) is satisfied.
• Zuazua asked whether the condition (1.5) can be weakened by replacing the product by an infinite linear

combination of the products indexed by k, with a suitable sequence of coefficients converging sufficiently
quickly to zero. In order to not make this paper too long, we shall study this question in a later work.
• If there exist a positive integer k, a real number p > 2 and two positive numbers α1 and c1 such that

f(s) ≥ α1s

k−1∏
j=1

log2
j s

 logpk s for all s > c1,

then condition (1.6) is satisfied. Indeed, we have

F (s) =

∫ s

0

f(t) dt ≥

∫ s

s/2

f(t) dt ≥ α1
s

2

s

2

k−1∏
j=1

log2
j

s

2

 logpk
s

2
·

If s is sufficiently large, say s > c, then

logj
s

2
>

logj s

2
for j = 1, . . . , k

and therefore

F (s) ≥ α12−2−2(k−1)−p

k−1∏
j=0

log2
j s

 logpk s,

i.e. (1.6) is satisfied with

α0 = α12−2−2(k−1)−p.

Next we study the boundary controllability of the system
u′′ −∆u− f(u) = 0 in Ω× (0, T ),

u = h on Γ× (0, T ),

u(0) = u0 and u′(0) = u1 in Ω.
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We only consider the one-dimensional case

Ω = (a, b),

so we rewrite it in the following form:
utt − uxx − f(u) = 0 in (a, b)× (0, T ),

u(t, a) = ha(t) and u(t, b) = hb(t) for t ∈ (0, T ),

u(0, x) = u0(x) and ut(0, x) = u1(x) for x ∈ (a, b).

(1.7)

Definition. The problem (1.7) is exactly controllable at time T if for every

(u0, u1), (v0, v1) ∈ H1(Ω)× L2(Ω)

there exist control functions

ha, hb ∈ H
1(0, T )

such that (1.7) has a global solution satisfying the final conditions

u(T ) = v0 and u′(T ) = v1 in Ω.

Theorem 1.3. Assume that f satisfies the growth condition (1.5) for some positive integer k. If

T > b− a, (1.8)

then the problem (1.7) is exactly controllable at time T .

Remarks.

• This theorem answers in particular a question of Zuazua [10]. He proved the exact controllability of (1.1)
by assuming instead of (1.5) that

|F (s)| < β0s
2 log2 |s| for all |s| > c

for a sufficiently small β0 and for a sufficiently large c > 0, and he asked whether the same conclusion
holds for large β0. Our theorem provides, in particular, an affirmative answer to such a question. Note,
however, that Zuazua also obtained analogous results by controlling at only one endpoint of the interval
(a, b), and for a related internal controllability problem.
• The optimality of condition (1.8) follows from the finite propagation speed for the wave equation (at least

if f ≡ 0).

To prove Theorem 1.1 we shall apply the approach of Cazenave and Haraux [1]. In particular, we shall need a
general nonlinear version of Gronwall’s inequality (see Th. 2.1 below), which may be interesting itself.

The proof of Theorem 1.2 will use the ideas of Zuazua [10] by showing that the solution blows up before T .
We were unable to adapt Zuazua’s fixed point method for the proof of Theorem 1.3. Instead, we apply a

former method of Imanuvilov [4], based on characteristics.

The authors are grateful to O. Imanuvilov for his many helpful explications concerning his former work [4] and for

providing them with the detailed proof of the trace regularity property in Proposition 5.1. Furthermore, they thank the

referee and E. Zuazua for several helpful remarks and suggestions.
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2. Gronwall type inequalities and iterated logarithms

Theorem 2.1. Let g: [0,∞) → R be a continuous and non-decreasing function. Assume that there exists a
positive number c such that

g > 0 in (c,∞) and

∫ ∞
c

1

g(s)
ds =∞. (2.1)

Let ϕ : [0, T ]→ R be a continuous, nonnegative function, satisfying for some numbers A,B > 0 the inequalities

ϕ(t) ≤ A+B

∫ t

0

g(ϕ(s)) ds for all t ∈ [0, T ]. (2.2)

Then ϕ is bounded on [0, T ] by a constant depending only on g, A, B and on T .

Remarks.
1) More precisely, putting

G(t) :=

∫ t

c

1

g(s)
ds, t ∈ (0,∞),

we have

ϕ(t) ≤ G−1(G(A) +Bt), for all t ∈ [0, T ].

2) The original Gronwall lemma corresponds to the choice g(s) = s.

3) Cazenave and Haraux [1] considered the case g(s) = s log(1 + s).

4) We shall use later the more general case where

g(s) = (ek + s) log(ek + s) . . . logk(ek + s) =
k∏
j=0

logj(ek + s)

for some positive integer k and with ek as defined above by logk ek = 2.

Proof of Theorem 2.1. It follows from our assumptions that G is of class C1, strictly increasing, and it maps
the interval (0,∞) onto (G(0+),∞). We have

d

dt

[
G

(
A+B

∫ t

0

g(ϕ(s)) ds

)]
= G′

(
A+B

∫ t

0

g(ϕ(s)) ds

)
Bg(ϕ(t)) = B

g(ϕ(t))

g
(
A+B

∫ t
0
g(ϕ(s)) ds

) ≤ B.

Therefore

G(ϕ(t)) ≤ G

(
A+B

∫ t

0

g(ϕ(s)) ds

)
≤ G(A) +Bt

and hence

ϕ(t) ≤ G−1(G(A) +Bt), t ∈ [0, T ]

as claimed.
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Now we generalize a crucial technical lemma in [1] to iterated logarithms. For this we introduce the iterated
exponential functions expj : R→ R by the formulas

exp0 x = x and expj x = exp(expj−1 x), j = 1, 2, . . .

Given an integer k ≥ 0, set ek = expk 2 and

Lk(x) =
k∏
j=0

logj(ej + |x|), x ∈ R.

This function is well defined, even, and increasing for x ≥ 0. Furthermore, we deduce from the inequality

Lk(x) ≥ (2 + |x|)
k∏
j=1

logj ej = 2k(2 + |x|) ≥ 2k+1 > 0

that

Lk(x) ≥ |x| and Lk(x) ≥ 2 > 0

for all x and k. We shall use these properties several times.
In order to simplify the notations henceforth we denote by ‖·‖p the usual norm of Lp(Ω) and we write simply

‖ · ‖ instead of ‖ · ‖2.
We need a generalization of a lemma in [1].

Lemma 2.2. Given k ≥ 0 and ε > 0 arbitrarily, there is a constant c(ε) such that

‖Lk(u)‖ ≤ ε‖∇u‖+ c(ε)Lk(‖u‖) (2.3)

for all u ∈ H1
0 (Ω), where ‖ · ‖ denotes the usual norm in L2(Ω).

Proof. Assume for simplicity that N ≥ 3: the cases N = 1, 2 are analogous and simpler. We recall that by the
Sobolev imbedding theorem there exists a constant S such that

‖u‖22N/(N−2) ≤ S‖∇u‖
2

for all u ∈ H1
0 (Ω).

Given δ > 0 arbitrarily, there exists a constant c(δ) > 0 such that

Lk(x)2 ≤ δ|x|(2N+4)/N + c(δ)

for all real x. Since

N

2N + 4
= α

1

2
+ (1− α)

N − 2

2N

if α = 2/(N + 2), applying the interpolational inequality we have (denoting by |Ω| the volume of Ω)

‖Lk(u)‖2 ≤ δ‖u‖(2N+4)/N
(2N+4)/N + c(δ)|Ω| ≤ δ

(
‖u‖2/(N+2)‖u‖N/(N+2)

2N/(N−2)

)(2N+4)/N
+ c(δ)|Ω| = δ‖u‖4/N‖u‖22N/(N−2)

+ c(δ)|Ω| ≤ δS‖u‖4/N‖∇u‖2 + c(δ)|Ω|.
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Since Lk > 1 everywhere, in case ‖u‖ ≤ 1 hence we deduce the estimate

‖Lk(u)‖2 ≤ δS‖∇u‖2 + c(δ)|Ω|Lk(‖u‖)2, (2.4)

and (2.3) follows by choosing δ = S−1ε2.
Henceforth assume that ‖u‖ > 1. Let us note that

log(c+ ab) ≤ log(c+ a) + log(c+ b)

for all a, b ≥ 0 and c ≥ 1, and that

log(a+ b) ≤ log a+ log b

for all a, b ≥ 2. Hence for every a, b ≥ 0 we have the inequalities

logj(ej + ab) ≤ logj−1

[
log(ej + a) + log(ej + b)

]
≤ logj−2

[
log2(ej + a) + log2(ej + b)

]
≤ · · · ≤ 2 max{logj(ej + a), logj(ej + b)}

for j = 1, 2, . . . , k. Distinguishing the cases a ≥ b and a < b hence we deduce the inequality k∏
j=1

logj(ej + ab)

2

≤ 4k max


 k∏
j=1

logj(ej + a)

2

,

 k∏
j=1

logj(ej + b)

2


≤ 4k

 k∏
j=1

logj(ej + a)

2

+ 4k

 k∏
j=1

logj(ej + b)

2

. (2.5)

Now given u ∈ H1
0 (Ω) such that ‖u‖ > 1, setting v := u/‖u‖ and applying (2.5) we have∫

Ω

Lk(u)2 dx =

∫
|u|≤‖u‖

Lk(u)2 dx+

∫
|u|>‖u‖

Lk(u)2 dx ≤ |Ω|Lk(‖u‖)2

+

∫
|u|>‖u‖

(2 + |u|)2

 k∏
j=1

logj(ej + |u|)

2

dx ≤ |Ω|Lk(‖u‖)2

+ 4k
∫
|u|>‖u‖

(2 + |u|)2

 k∏
j=1

logj(ej + |v|)

2

dx

+ 4k
∫
|u|>‖u‖

(2 + |u|)2

 k∏
j=1

logj(ej + ‖u‖)

2

dx =: |Ω|Lk(‖u‖)2 + I1 + I2.

Since ‖u‖ > 1 implies

2 + |u| ≤ ‖u‖(2 + |v|),

we have

I1 ≤ 4k
∫
|u|>‖u‖

‖u‖2Lk(v)2 dx ≤ 4k‖u‖2‖Lk(v)‖2.
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Furthermore, since |u| > ‖u‖ > 1 implies

2 + |u| ≤ 3|u|,

we have

I2 ≤ 9 · 4k
∫
|u|>‖u‖

|u|2 dx

 k∏
j=1

logj(ej + ‖u‖)

2

≤ 9 · 4kLk(‖u‖)2.

Substituting this into the above inequality we find that

‖Lk(u)‖2 ≤ |Ω| Lk(‖u‖)2 + 4k‖u‖2 ‖Lk(v)‖2 + 9 · 4kLk(‖u‖)2.

Applying (2.4) for v and using the inequality Lk(x) ≥ |x| hence we obtain that

‖Lk(u)‖2 ≤ {|Ω|+ 9 · 4k}Lk(‖u‖)2 + 4k‖u‖2δS‖∇v‖2 + 4k‖u‖2c(δ)|Ω|Lk(1)2

≤ 4kδS‖∇u‖2 + {|Ω|+ 4kc(δ)|Ω|Lk(1)2 + 9 · 4k}Lk(‖u‖)
2.

Choosing δ = 4−kS−1ε2 the lemma follows.

3. Proof of Theorem 1.1

According to the general Theorem 6.1.4 in [8], it suffices to show that the maximal solution cannot blow up
before t = T . Thus Theorem 1.1 will follow from the

Lemma 3.1. Consider the unique maximal solution of (1.1), defined on some interval [0, T ′) with 0 < T ′ ≤ T .
Then

u ∈ L∞(0, T ′;H1
0 (Ω)), u′ ∈ L∞(0, T ′;L2(Ω)), F (u) ∈ L∞(0, T ′;L1(Ω)).

Proof. Multiplying the equation in (3.1) by u′ and integrating by parts we obtain that the quantity∫
Ω

(u′(t))2 + |∇u(t)|2 − 2F (u(t)) dx (3.1)

is conserved. Applying Lemma 2.2 we obtain that

‖u′‖2 + ‖∇u‖2 ≤ c+ ‖Lk(u)‖2 ≤ c+ ε‖∇u‖2 + c(ε)Lk(‖u‖)2. (3.2)

Choosing ε = 1 and using the estimate

‖u(t)‖ ≤ ‖u0‖+

∫ t

0

‖u′(s)‖ ds =: ‖u0‖+ ϕ(t) (3.3)

it follows that

ϕ′(t) = ‖u′(t)‖ ≤ c+ c(1)Lk(‖u0‖+ ϕ(t))

and therefore

ϕ(t) ≤ cT + c

∫ t

0

Lk(‖u0‖+ ϕ(s)) ds, 0 ≤ t < T ′.
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Now choose k′ > k such that

Lk(‖u0‖+ x) ≤ Lk′(x)

for all x ≥ 0, and apply Theorem 2.1 with

g(s) = Lk(‖u0‖+ s).

We obtain that

ϕ ∈ L∞(0, T ′).

Using (3.3) it follows that

u ∈ L∞(0, T ′;L2(Ω))

and then, applying (3.2) again, this time with ε < 1, we conclude that

u ∈ L∞(0, T ′;H1
0 (Ω))

and

u′ ∈ L∞(0, T ′;L2(Ω)).

Finally, by the conservation of the quantity (3.1) we have

F (u) ∈ L∞(0, T ′;L1(Ω)),

as stated.

4. Proof of Theorem 1.2

It is sufficient to prove Theorem 1.2 for small T ’s. Set

x0 =
a+ b

2

and fix

0 < T < R <
b− a

2

arbitrarily. Thanks to (1.5) we have∫ ∞
c

ds√
F (s)

≤ c1

∫ ∞
c

ds

s log s . . . logk−1 s (logk s)
p/2

= c1

(
1−

p

2

)−1 [
(logk s)

1− p2
]∞
c

=
2c1
p− 2

(logk c)
1− p2 <∞.

Therefore we can choose a positive constant α > c such that∫ ∞
α

ds√
F (s)

<
√

2T,
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and choose u0 ∈ H1
0 (Ω) such that

u0 = α in (x0 −R, x0 +R).

Furthermore, choose another positive constant β, and choose u1 ∈ L2(Ω) such that

u1 = β in (x0 −R, x0 +R).

We claim that the corresponding solution of (1.1) blows up before T .
Assume on the contrary that u is defined in (a, b) × (0, T ). It follows from the finite propagation property

that for any fixed x ∈ (x0 − R + T, x0 + R − T ), the function v(t) := u(x, t) satisfies the ordinary differential
equation

v′′ − f(v) = 0 in (0, T )

with the initial conditions

v(0) = α and v′(0) = β.

(In particular, it does not depend on the particular choice of x.)
It follows from the differential equation that the quantity

E(t) := |v′(t)|2 − 2F (v(t))

is in fact independent of t ∈ (0, T ). Hence

v′(t) =
√
E(0) + 2F (v(t))

and therefore

T =

∫ v(T )

α

dv√
E(0) + 2F (v)

≤

∫ ∞
α

dv√
2F (v)

·

But this is impossible because the last integral is less than T by the choice of α.

5. Proof of Theorem 1.3

We apply a method of Imanuvilov [4]. First we deduce from Theorem 1.1 an auxiliary result on the Cauchy
problem in a triangle. Given a bounded interval (−d, d), set

Q = {(x, t) ∈ R2 : −d < x < d, 0 < t < d− |x|},

and

S = {(x, t) ∈ R2 : −d < x < d, t = d− |x|} ·

Then Q is a triangle with basis (−d, d) and altitude d, and S is the union of the other two sides; see Figure 1.
Consider the problem{

utt − uxx − f(u) = 0 in Q,

u(0, x) = u0(x) and ut(0, x) = u1(x) for x ∈ (−d, d).
(5.1)
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d

t

x

Q

0-d

d-|x|

S S

Figure 1

Proposition 5.1. Assume that f satisfies for some positive integer k the condition (1.5), and let

u0 ∈ H
1(−d, d), u1 ∈ L

2(−d, d).

Then the problem (5.1) has a unique solution u ∈ H1(Q) for which the traces ut(·, t), ux(·, t) are well defined
in L2(t− d, d− t) for every 0 ≤ t ≤ d, and the function

t 7→

∫ d−t

t−d
u2
t + u2

x dx

is continuous (hence bounded) on [0, d].
Furthermore, the trace of the solution on S satisfies

u|S ∈ H
1(S). (5.2)

Remark.
Note that the above properties imply that solutions are bounded: u ∈ L∞(Q).

Proof. Let us choose a bounded interval Ω = (a, b) containing [−d, d] in its interior, and extend u0 and u1 to Ω
such that

u0 ∈ H
1
0 (a, b), u1 ∈ L

2(a, b).

Then by Theorem 1.1 the problem (1.1) has a (unique) global solution

ū ∈ C([0, d];H1(a, b)) ∩C1([0, d];L2(a, b)).

Its restriction u to Q has the desired properties.
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Let us note that if f is globally Lipschitz continuous and if the initial data are more regular:

u0 ∈ H
2(Ω) ∩H1

0 (Ω) and u1 ∈ H
1
0 (Ω),

then by standard regularity results we have

ū ∈ C([0, T ];H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, T ];H1

0(Ω)) ∩ C2([0, T ];L2(Ω)).

Its restriction u to Q will be called a strong solution.

For the proof of the uniqueness, let u1, u2 be two solutions and set w = u1 − u2, so that{
wtt − wxx = ϕw in Q,

w(0, x) = wt(0, x) = 0 for x ∈ (−d, d)

where

ϕ =

∫ 1

0

f ′(λu1 + (1− λ)u2) dλ ∈ L∞(Q).

Therefore

w(t, x) = 1
2

∫ t

0

∫ x+(t−τ)

x−(t−τ)

ϕw dσ dτ.

Define

W (t) = sup
|x|<d−t

|w(t, x)|, 0 ≤ t ≤ d,

then

W (t) ≤ ‖ϕ‖∞

∫ t

0

W (τ) dτ, 0 ≤ t ≤ d,

and so W ≡ 0 by the usual Gronwall lemma.

For the proof of (5.2), set

E(t) =

∫ d−t

t−d
u2
t + u2

x dx, 0 ≤ t ≤ d.

Since the solution is bounded, modifying f outside a sufficiently large interval we may assume that f is globally
Lipschitz continuous. Then for every strong solution (see the definition above) we have

E′(t) = −
(
u2
t + u2

x

)
(t, d− t)−

(
u2
t + u2

x

)
(t, t− d) +

∫ d−t

t−d
2ututt + 2uxuxt dx

= −(ut − ux)2(t, d− t)− (ut + ux)2(t, t− d) +

∫ d−t

t−d
2ut(utt − uxx) dx

= −2u2
τ(t, d− t)− 2u2

τ(t, t− d) +

∫ d−t

t−d
2f(u)ut dx,
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where uτ denotes the tangential derivative along S. Since E(d) = 0, integrating we obtain the identity

√
2

∫
S

u2
τ dS = E(0) +

∫
Q

F (u) dx. (5.3)

This identity remains valid for all solutions by an approximation argument.
Since the right-hand side of the identity (5.3) is finite, the property (5.2) follows.

Remark. Let us note for further reference that the proof of identity (5.3) remains valid for every function
u ∈ C2(Q) ∩C2(Q̄) satisfying

utt − uxx − f(u) = 0 in Q.

Now, using the same notation as in Proposition 5.1, consider the Goursat problem{
utt − uxx − f(u) = 0 in Q,

u = ψ on S.
(5.4)

Proposition 5.2. Assume that f satisfies condition (1.5) for some positive integer k, and let ψ ∈ H1(S).
Then the problem (5.4) has a unique solution u ∈ H1(Q) such that the traces ut(·, t), ux(·, t) are well defined in
L2(t− d, d− t) for every 0 ≤ t ≤ d, and the function

t 7→

∫ d−t

t−d
u2
t + u2

x dx

is continuous (hence bounded) on [0, d].

Proof. Uniqueness. We note that, as in the preceding proposition, solutions belong to L∞(Q). If u1, u2 solve
(5.4), then w := u1 − u2 satisfies {

wtt − wxx = ϕw in Q,

w = 0 on S

where

ϕ =

∫ 1

0

f ′(λu1 + (1− λ)u2) dλ ∈ L∞(Q).

We have to show that w vanishes identically. More generally, we will show that if a function w, having the same
regularity as the solutions in the formulation of the proposition, satisfies{

wtt − wxx = ϕw in Q,

w = ψ on S

for some ϕ ∈ L∞(Q) and ψ ∈ H1(S), then

‖w‖H1(Q) + ‖wt‖L2(0,d;L2(t−d,d−t)) + ‖wx‖L2(0,d;L2(t−d,d−t)) ≤ c
′‖ψ‖H1(S) (5.5)

with a constant c′ depending only on R if ‖ϕ‖L∞(Q) ≤ R.
First, from the inequalities

|w(x, t)| ≤ |w(x, t) − w(t− d, t)|+ |ψ(t− d, t)|
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and

|w(x, t) − w(t− d, t)| ≤ ‖wx‖L1(t−d,d−t) ≤ c‖wx‖L2(t−d,d−t)

we deduce the estimate

‖w(·, t)‖L2(t−d,d−t) ≤ c‖wx‖L2(t−d,d−t) + c|ψ(t− d, t)|. (5.6)

Next, setting

E(t) =

∫ d−t

t−d
w2
t + w2

x dx

and repeating the computation of the preceding proof, we obtain

E′(t) = −2ψ2
τ(t, d− t)− 2ψ2

τ (t, t− d) +

∫ d−t

t−d
2ϕwwt dx.

Since E(d) = 0, it follows that

E(t) = 2

∫ d

t

ψ2
τ (s, d− s) + ψ2

τ (s, t− s) ds−

∫ d

t

∫ d−s

s−d
2(ϕwwt)(x, s) dx ds

≤
√

2‖ψτ‖
2
L2(S) +

∫ d

t

∫ d−s

s−d
w2(x, s) + ‖ϕ‖2L∞(Q)w

2
t (x, s) dx ds.

Hence, using (5.6), we deduce that

E(t) ≤
√

2‖ψτ‖
2
L2(S) + c

∫ d

t

ψ2(s− d, s) ds+

∫ d

t

∫ d−s

s−d
cw2

x(x, s) + ‖ϕ‖2L∞(Q)w
2
t (x, s) dx ds

≤ c‖ψ‖2H1(S) + c
(
1 + ‖ϕ‖2L∞(Q)

) ∫ d

t

E(s) ds.

Applying the usual Gronwall lemma, the above inequality yields

sup
0≤t≤d

E(t) ≤ c′‖ψ‖2H1(S) (5.7)

with a constant c′ depending only on R if ‖ϕ‖L∞(Q) ≤ R. Since (5.6) implies that

‖w‖2L2(Q) ≤ c
′
(
‖ψ‖2H1(S) + sup

0≤t≤d
E(t)

)
, (5.8)

the desired inequality (5.5) follows from (5.7) and (5.8).

Existence. Assume first that f is globally Lipschitz continuous. Then for every ψ ∈ C1(S) the problem (5.4)
has a solution u ∈ C1(Q), defined in a suitable weak sense. Indeed, the proof given in [9] (lecture 5) for the
linear case remains valid for the globally Lipschitz case.

Now, given ψ ∈ H1(S) arbitrarily, choose a sequence (ψn) in H1(S) such that the corresponding solutions
un of (5.4) belong to C1(Q̄) ∩ C2(Q) and ψn → ψ in H1(S). Then the estimate (5.5) holds for all differences
w := un − um with a constant c′ = c′(R) (where R is the Lipschitz constant of f), which is easily seen to be
independent of n. Therefore, (un) converges to a solution of (5.2), having the required regularity properties.
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Let us note that we also have the estimate

‖u‖L∞(Q) ≤ c
′′ (5.9)

with a constant c′′ depending only on ‖ψ‖H1(S) and on the constant β in the condition (1.5), but not on the
Lipschitz constant of f . Indeed, applying the identity (5.3) for each n (see the remark following the proof of
the preceding proposition), we have

‖un(0)‖2L∞(−d,d) ≤ cEn(0) ≤ c+c

∫
Q

|F (un)|dx dt ≤ c+c

∫
Q

L(un)2 dx dt ≤ c+c

∫ d

0

L(‖un(t)‖2L∞(t−d,d−t)) dt.

Since the time 0 plays no special role here, we have more generally

‖un(s)‖2L∞(s−d,d−s) ≤ c+ c

∫ d

s

L(‖un(t)‖2L∞(t−d,d−t)) dt

for all 0 ≤ s ≤ t, with the same constant c. Applying Theorem 2.1 we conclude that ‖un‖L∞(Q) is bounded by
some constant depending only on β and on ‖ψn‖H1(S). Letting n→∞ we obtain the desired estimate (5.9).

Now let us turn to the case where f is not globally Lipschitz continuous. Let us denote by vn the solution of
(5.1) where f is replaced by the globally Lipschitz continuous function fn defined by

fn(s) :=


n if f(s) > n,

−n if f(s) < −n,

f(s) otherwise.

By the preceding estimate (5.9) the sequence (vn) is bounded in L∞(Q), because all functions fn satisfy the
same growth conditions as f . It follows that if n is larger than this common bound, then vn also solves (5.1)
with the original f .

Turning to the proof of Theorem 1.3, let us set

A = (a, 0),

B = (a, T ),

C = (b, T ),

D = (b, 0),

E =

(
a+ b

2
,
b− a

2

)
,

F =

(
a+ b

2
, T −

b− a

2

)
·

Furthermore, let us denote by K1 the triangle ADE, by K2 the triangle BFC, by K3 the trapezoid AEFB and
by K4 the trapezoid CFED; see Figure 2.

By Proposition 5.1 the Cauchy problem{
utt − uxx − f(u) = 0 in K1,

u(0, x) = u0(x) and ut(0, x) = u1(x) for x ∈ (a, b)
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has a unique solution u1, and its trace on the line segments AE, DE belongs to H1(AE) and H1(DE),
respectively.

Similarly, the Cauchy problem

{
utt − uxx − f(u) = 0 in K2,

u(0, x) = v0(x) and ut(0, x) = v1(x) for x ∈ (a, b)

has a unique solution u2, and its trace on the line segments BF , CF belongs to H1(BF ) and H1(CF ),
respectively.

Now choose an arbitrary function z0 ∈ H1(EF ) which has the same values at the endpoints E and F of the
segment EF as u1 and u2. Furthermore, fix a function z1 ∈ L2(EF ) arbitrarily.

We are going to prove that the Goursat problem



utt − uxx − f(u) = 0 in K3,

u = u1 on AE,

u = z0 on EF,

u = u2 on BF,

∂u/∂x = z1 on EF

(5.10)
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has a unique solution u3, and similarly, that the Goursat problem

utt − uxx − f(u) = 0 in K4,

u = u1 on DE,

u = z0 on EF,

u = u2 on CF,

∂u/∂x = z1 on EF

has a unique solution u4. By symmetry, we only consider the first one in the trapezoid K3.
Let us denote by G the intersection of the lines AE and BF , and let us denote by K5 the triangle EGF .

Exchanging the role of the variables t and x and applying Proposition 5.1 again, we obtain that the problem
utt − uxx − f(u) = 0 in K5,

u = z0 on EF,

∂u/∂x = z1 on EF,

has a unique solution whose traces on the line segments FG and EG belong to H1(FG) and H1(EG),
respectively.

Now consider the usual Goursat problem{
utt − uxx − f(u) = 0 in K6,

u = ϕ on S,
(5.11)

where K6 denotes the triangle AGB, S denotes the union of the four line segments BF , FG, GE and EA, and
ϕ is given by the restrictions to these four line segments of the solutions of the above three Cauchy problems in
the triangles K1, K2 and K5. By Proposition 5.1 we have ϕ ∈ H1(S). Applying Proposition 5.2 (we exchange
again the sense of the space and time variables), the problem (5.11) has a unique solution, and its trace on the
side AB belongs to H1(AB).

In order to prove uniqueness, let u1 and u2 be two solutions of (5.10). Then the above method allows us to
extend them to two solutions ũ1 and ũ2 of (5.11) with the same boundary data ϕ. We conclude by using the
uniqueness part of Proposition 5.2 that ũ1 ≡ ũ2 and thus u1 ≡ u2.

Finally, we claim that the formula

u := ui in Ki (i = 1, . . . , 4)

defines a solution of (1.7) with ha, hb ∈ H1(0, T ) given by the traces of u, and satisfying the desired final
conditions by construction. The only property to verify is that the differential equation in (1.7) is satisfied in
the whole rectangle R := (a, b) × (0, T ) and not only in the subdomains K1, K2, K3 and K4. More precisely,
we have to prove the

Lemma 5.3. The equation ∫
R

u(∂2
t − ∂

2
x)ϕ dx dt =

∫
R

f(u)ϕ dx dt (5.12)

is satisfied for all ϕ ∈ C∞0 (R).

The proof of this lemma involves nothing else than the theory of linear hyperbolic systems. For the reader’s
convenience we give a proof in an Appendix.
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6. Appendix. Proof of lemma 5.3

We proceed in two steps.

Lemma 6.1. The equation (5.12) is satisfied for all ϕ ∈ C∞0 (R′) where R′ = R − {E,F}.

Proof. Set

Sij = Ki ∩Kj, 1 ≤ i 6= j ≤ 4

and

S = ∪i6=jSij .

Let us fix ϕ ∈ C∞0 (R′). We can cover supp ϕ with a finite collection B1, . . . , BN of open balls contained in R
such that

E,F /∈ ∪Nk=1Bk,

and that each Bk intersects at most one of the sets Sij .

Let 1 =
∑N
k=1 ψk be a partition of unity related to such a collection. Then

ϕ =
N∑
k=1

ϕk, ϕk = ϕψk, supp ϕk ⊂ Bk.

It suffices to show that ∫
R

u(∂2
t − ∂

2
x)ϕk dx dt =

∫
R

f(u)ϕk dx dt, k = 1, . . . , N. (6.1)

If Bk ∩ S = ∅, this equality follows directly from the assumptions. Let us assume that Bk ∩ S 6= ∅, then
Bk ∩ S = Bk ∩ Sij for some i, j.

If Sij = S34, then the equality follows because u3 and u4 agree on S34 together with their normal derivatives.
The remaining four cases are similar: suppose, for instance, that Sij = S13. Then∫

R

u(∂2
t − ∂

2
x)ϕk dx dt =

(∫
Bk∩K1

+

∫
Bk∩K3

)
u(∂2

t − ∂
2
x)ϕk dx dt.

Moreover, using the normal vector ν = (1,−1) on S13,∫
Bk∩K1

u(∂2
t − ∂

2
x)ϕk dx dt =

∫
Bk∩K1

(∂t − ∂x)[u(∂t + ∂x)ϕk]− (∂t − ∂x)u(∂t + ∂x)ϕk dx dt

=

∫
Bk∩S13

u(∂t + ∂x)ϕk(νt − νx) dS −

∫
Bk∩K1

(∂t + ∂x)ϕk(∂t − ∂x)u dx dt

= 2

∫
Bk∩S13

u(∂t + ∂x)ϕk dS −

∫
Bk∩S13

ϕk(∂t − ∂x)u(νt + νx) dS

+

∫
Bk∩K1

ϕkf(u) dx dt.

Since νt + νx = 0 on S13, we conclude that∫
Bk∩K1

u(∂2
t − ∂

2
x)ϕk dx dt = 2

∫
Bk∩S13

u(∂t + ∂x)ϕk dS +

∫
Bk∩K1

ϕkf(u) dx dt. (6.2)
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Similarly,∫
Bk∩K3

u(∂2
t − ∂

2
x)ϕk dx dt =

∫
Bk∩S13

u(∂t + ∂x)ϕk(νx − νt) dS −

∫
Bk∩S13

ϕk(∂t − ∂x)u(−νt − νx) dS

+

∫
Bk∩K3

ϕkf(u) dx dt;

since νx − νt = −2 and −νt − νx = 0 on S13, we conclude that∫
Bk∩K3

u(∂2
t − ∂

2
x)ϕk dx dt = −2

∫
Bk∩S13

u(∂t + ∂x)ϕk dS +

∫
Bk∩K3

ϕkf(u) dx dt. (6.3)

Adding together the equalities (6.2) and (6.3), the boundary terms cancel each other and we obtain (6.1).
The same computation works if Sij = S24. If Sij = S14 or Sij = S23, then we can similarly argue, exchanging

the roles of the operators ∂t − ∂x and ∂t + ∂x.

The twofold application of following lemma will complete the proof of Lemma 5.3. First we apply it with
g = f(u), Ω = R− {E} and P = F , and then with g = f(u), Ω = R and P = E.

Lemma 6.2. Let Ω be an open set in R2 and let P ∈ Ω. If for some u ∈ H1(Ω) and g ∈ L2(Ω) the equality∫
Ω

u(∂2
t − ∂

2
x)ϕ dx dt =

∫
Ω

gϕ dx dt

is satisfied for all ϕ ∈ C∞0 (Ω− {P}), then it is also satisfied for all ϕ ∈ C∞0 (Ω).

Proof. Since the points have zero capacity in R2, there exists for every ε > 0 a function ϕε ∈ C∞0 (Bε(P )) and
a number 0 < ρε < ε such that

0 ≤ ϕε(x, t) ≤ 1, ϕε(x, t) = 1 if |(x, t)− P | ≤ ρε,

∫
Bε(P )

|∇ϕε|
2 dx dt ≤ ε.

(See, e.g., Maz’ja [7] for proof.)
Let ϕ ∈ C∞0 (Ω), then

ϕ = ϕϕε + ϕ(1− ϕε) =: ϕ1
ε + ϕ2

ε

with

ϕ2
ε ∈ C

∞
0 (Ω− {P}).

Therefore ∫
Ω

u(∂2
t − ∂

2
x)ϕ dx dt =

∫
Ω

u(∂2
t − ∂

2
x)ϕ1

ε dx dt+

∫
Ω

u(∂2
t − ∂

2
x)ϕ2

ε dx dt

= −

∫
Ω

(∂tu∂tϕ
1
ε − ∂xu∂xϕ

1
ε) dx dt+

∫
Ω

gϕ2
ε dx dt.

Now, notice that

‖ϕ− ϕ2
ε‖L2(Ω) = ‖ϕϕε‖L2(Bε(P )) → 0
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as ε→ 0, and that ∣∣∣∣∫
Ω

(∂tu∂tϕ
1
ε − ∂xu∂xϕ

1
ε) dx dt

∣∣∣∣ ≤ ‖∇u‖L2(Ω)‖∇ϕ
1
ε‖L2(Ω).

Using the choice of ϕε we have

‖∇ϕ1
ε‖L2(Ω) ≤ ‖∇ϕ‖L2(Ω)‖ϕε‖L2(Bε(P )) + ‖ϕ‖L2(Ω)‖∇ϕε‖L2(Bε(P )) → 0

as ε→ 0, and so∣∣∣∣∫
Ω

u(∂2
t − ∂

2
x)ϕ dx dt−

∫
Ω

gϕ dx dt

∣∣∣∣ ≤ ‖g‖L2(Ω)‖ϕ− ϕ
2
ε‖L2(Ω) + ‖∇u‖L2(Ω)‖∇ϕ

1
ε‖L2(Ω) → 0.

Hence the lemma follows.
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