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LINKS BETWEEN YOUNG MEASURES ASSOCIATED
TO CONSTRAINED SEQUENCES

Anca-Maria Toader
1

Abstract. We give necessary and sufficient conditions which characterize the Young measures
associated to two oscillating sequences of functions, un on ω1×ω2 and vn on ω2 satisfying the constraint
vn(y) = 1

|ω1|
R
ω1
un(x, y)dx. Our study is motivated by nonlinear effects induced by homogenization.

Techniques based on equimeasurability and rearrangements are employed.
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1. Introduction

Given two sequences of functions, un on ω1×ω2 and vn on ω2 such that the constraint vn(y)=
1
|ω1|

∫
ω1

un(x, y)dx

holds, one wants to characterize the relationship between their associated Young measures.
Our main result (Th. 3.1) gives necessary and sufficient conditions for the above problem in terms of

distribution measures and decreasing rearrangements. It can be interpreted as follows: Young measures cap-

ture something of the oscillating behaviour of the sequence (un) and the integration
∫
ω1

un(x, y)dx destroyes

part of the oscillations of un. We use Young measure techniques introduced by Ball, Tartar, Balder, Valadier.
Notions and results from Probability Theory are employed; particularly, the order relation ≺ on the set of
positive measures due to Choquet and Loomis, and related results (see Cartier et al. [4] and Meyer [6]). The
corresponding preorder relation ≺ on the set of nonnegative L1 functions introduced by Hardy et al. is used,
as well as properties of doubly stochastic operators proved by Ryff.

Our study was motivated by more complex questions in relation with nonlocal effects induced by
homogenization.

Consider the degenerate elliptic equation studied by Amirat et al. in [1]:
∂

∂x

(
an(x, y)

∂un
∂x

(x, y)
)

= f(x, y) in ]0, 1[×]0, 1[,

un(0, y)= un(1, y) = 0 on ]0, 1[.
(1.1)

By homogenization a nonlocal effect appears expressed in terms of a kernel. We introduce a parameter γ
(following an idea of Tartar [10]) by setting an(x, y) := a−(x, y)/(1 + γbn(x, y)) where 1/an ⇀ 1/a− for the
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weak ∗ topology and bn := a−/an − 1. Then the above problem corresponds to the case γ = 1. The solution
un writes in series of powers of γ like un,γ(x, y) = v0

n(x, y) + v1
n(x, y)γ + · · ·+ vkn(x, y)γk + . . . and the analysis

would be based on analyticity properties in the parameter γ. The kernel describing the nonlocal effect is the
weak limit of

Kn,γ(x, ξ, y) =
bn(ξ, y)

1 + γ
∫ 1

0 bn(x, y)dx

(∫ 1

0

bn(x, y)dx− bn(x, y)
)
. (1.2)

One would like to characterize the nature of kernels that may appear as weak limits of Kn,γ in (1.2), in order
to understand the constitutive laws of the homogenized materials. This is still an open problem.

We inscribe our contribution in the effort to characterize such kernels by solving the symplified problem
presented in the beginning.

In Section 2 we make a brief recall on notions to be employed: distribution measures, equimeasurability,
rearrangements, the relation ≺, Young measures.

Section 3 is dedicated to our main result: we state it and give its proof by making use of auxiliary results
contained in Section 4.

2. Preliminary notions

To describe precisely the type of questions we are considering here, we begin by recalling a few facts about
distribution measures and equimeasurable functions. Let Ω be a bounded domain in RN , denote by LN the
Lebesgue measure on RN and by B(Ω) the Borel σ-field of Ω. Let f : Ω → R+ be a nonnegative, measurable
function; we represent by µf its distribution measure defined by

µf (B) := LN (f−1(B)), ∀B ∈ B(R+).

We denote by f∗ the decreasing rearrangement of f given by:

f∗(s) := sup{t > 0 : µf (]t,∞[) > s}·

It is easily checked that f∗ is the unique (up to modifications on Lebesgue zero-measure sets) nonincreasing
function on [0,LN (Ω)[ such that f∗ and f have the same distribution measure µf . Finally, we will say that
f, g ≥ 0 are equimeasurable or, equivalently, that f is a rearrangement of g if they have the same distribution
measure. We will denote this equivalence relation by f ∼ g.

Hardy et al. introduced (see [5]) the following preorder relation on the set of nonnegative functions in L1(Ω):
for f and g in L1(Ω)

g ≺ f iff
∫

Ω

F (g(t))dt ≤
∫

Ω

F (f(t))dt ,

for all convex, continuous functions F : R+ → R. Observe that f ≺ g and g ≺ f is equivalent to f ∼ g. We
recall from [5] the following property of the preorder relation between functions in L∞(Ω), in terms of decreasing
rearrangements

g ≺ f iff


∫ t

0

g∗(s)ds≤
∫ t

0

f∗(s)ds ∀t ∈ [0,LN(Ω)[,∫ LN (Ω)

0

g∗(s)ds=
∫ LN (Ω)

0

f∗(s)ds.

(2.1)

Actually we shall only use functions which take values in a compact interval.
On the set of positive finite measures, the corresponding order relation was introduced by Choquet and, in

a different framework, by Loomis (see [4] and [6]).
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Definition 2.1. Two positive finite measures on ([α, β],B([α, β])), ν and µ, having the same total mass
(µ([α, β]) = ν([α, β])) satisfy µ ≺ ν if and only if

∫ β

α

φ(z)dµ(z) ≤
∫ β

α

φ(z)dν(z) ,

for all continuous and convex functions φ : [α, β]→ R.

Remark 2.2. Given two positive functions such that g ≺ f , their distribution measures µg and µf satisfy
µg ≺ µf . Conversely, given two measures that satisfy µ ≺ ν, if g and f have the distribution measures µ and ν
respectively, then g ≺ f .

The “old” tool of Young measures has proven crucial for applications in asymptotic analysis. Young measures
techniques were developed by Tartar [9], Ball [3], Balder [2], Valadier [11], etc.

In the sequel we make a brief recall on Young measures following the notations and framework from [11].
We call Young measure any positive measure µ on Ω× S (S is a metrizable space) whose projection on Ω is

LN . Let Y (Ω× S) be the set of all Young measures on Ω× S.
We will not distinguish µ from its disintegration (µx)x∈Ω which is a measurable family of probabilities on S

such that for any ψ : Ω× S → R, µ-integrable,∫
Ω×S

ψ dµ =
∫

Ω

∫
S

ψ (x, ξ) dµx(ξ)dLN (x).

For each measurable function a : Ω → S we associate a Young measure µa, with support in the graph of a,
defined by

〈µa, φ〉 =
∫

Ω×S
φ(x, λ)dµa(x, λ) =

∫
Ω

φ(x, a(x))dx,

for all positive Carathéodory integrands φ : Ω× S → R.
On Y(Ω× S) we consider the narrow topology, i.e., the weakest topology that makes continuous the maps

µ 7→
∫

Ω×S
φ(x, λ)dµ(x, λ),

for all bounded Carathéodory integrands φ.

Remark 2.3. 1) The set of Young measures associated to a sequence of functions uniformly bounded
in L1(Ω;Rd) is relatively compact in Y(Ω× Rd).

2) If S is a metrizable compact space, then every set of Young measures associated to a sequence of measurable
functions an : Ω→ S is relatively compact in Y(Ω× S).

Remark 2.4. 1) Given a uniformly bounded sequence (an) in L1(Ω;Rd), using Remark 2.3 1), we may assume
that, up to a subsequence of (an), the sequence of their associated Young measures, narrow converges to some
µ = (µx)x∈Ω ∈ Y(Ω× Rd).

2) For a sequence of functions an : Ω → S we say that µ is the Young measure associated to the sequence
(an), or, that (an) gives rise to the Young measure µ, if the Young measures associated to (an) narrow converge
to µ, i.e., for all bounded Carathéodory integrand φ,∫

Ω

φ(x, an(x)) dx→
∫

Ω×S
φ(x, λ) dµ(x, λ).
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3. Main result

Theorem 3.1 below was conjectured by Tartar in some discussions we had together, during his visits to
Lisbon, in December 1998.

Consider two domains ω1 ⊂ RN and ω2 ⊂ RM and a compact interval [α, β] in R. We may assume without
losing generality that |ω1| = |ω2| = 1.

Theorem 3.1. Given are the sequences un : ω1 × ω2 → [α, β] and vn : ω2 → [α, β] such that vn(y) =∫
ω1
un(x, y)dx. Assume that the sequence (un) gives rise to the Young measure ν = (νx,y)(x,y)∈ω1×ω2 and that the

sequence (vn) gives rise to the Young measure µ = (µy)y∈ω2. One defines a function f : ω1×ω2× (0, 1)→ [α, β]
such that f(x, y, ·) is nonincreasing and its distribution measure is νx,y, and similarly, a function g : ω2×(0, 1)→
[α, β] such that g(y, ·) is nonincreasing and its distribution measure is µy. Then one has∫ t

0

g(y, s)ds ≤
∫
ω1

∫ t

0

f(x, y, s)dsdx, (3.1)

with equality for t = 1.
Conversely, if f and g satisfy the above inequality for all t ∈ [0, 1) and the corresponding equality for t = 1,

then, denoting by νx,y and µy the distribution measures of f(x, y, ·) and g(y, ·), respectively, there exists a
sequence un : ω1 × ω2 → [α, β] that gives rise to the Young measure ν and the sequence defined by vn :=∫
ω1
un(x, y)dx gives rise to the Young measure µ.

The author presented a particular case of the above result (the Young measure ν = (νx,y)(x,y)∈ω1×ω2 did not
depend on x: νx,y = νy) at the Equadiff99 conference held in Berlin.

Proof. For the direct implication let t ∈ [0, 1] arbitrarily fixed. Then by Lemma 4.5 there exists a subsequence
vnk of vn and a sequence of characteristic functions χvk : ω2 → {0, 1}, χvk ⇀ t such that

χvkvnk ⇀

∫ t

0

g(y, s)ds.

On the other hand, applying Lemma 4.5 with the corresponding subsequence (unk) and with the same number
t, we obtain that for any sequence of characteristic functions χk : ω1 × ω2 → {0, 1} such that χk ⇀ t, up to a
subsequence, we have that

weak lim
k
χkunk ≤

∫ t

0

f(x, y, s)ds, (3.2)

and in particular the above inequality holds for χvk. Then∫ t

0

g(y, s)ds = weak lim
k
χvkvnk = weak lim

k
χvk

∫
ω1

unk(x, y)dx

= weak lim
k

∫
ω1

χvk(y)unk(x, y)dx ≤
∫
ω1

∫ t

0

f(x, y, s)dsdx,

and the direct implication turns out, for t ∈ [0, 1[. For t = 1, χvk → 1 strongly and (3.2) holds with equality
which yields equality in (3.1).

Conversely, suppose that f and g satisfy (3.1) for t ∈ [0, 1) and the corresponding equality for t = 1. We
construct a sequence un giving rise to the Young measure ν and such that the sequence vn :=

∫
ω1
un(x, y)dx

gives rise to the Young measure µ as follows: by property (2.1), (3.1) is equivalent to g(y, ·) ≺
∫
ω1
f(x, y, ·)dx.

Applying Lemma 4.4 it turns out that there exists a positive measure θ on [0, 1]× [0, 1] whose both projections
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are the Lebesgue measure and such that

g(y, t) =
∫ 1

0

∫
ω1

f(x, y, s)dxdθt(s).

Here θt is the disintegration of θ with respect to the Lebesgue measure. Define u : ω1×ω2× [0, 1]× [0, 1]→ [α, β]
by u(x, y, s, t) := f(x, y,Φt(s)), where Φt : [0, 1]→ [0, 1] has the distribution measure θt. The existence of Φt is
ensured by Remark 4.1. Then g writes

g(y, t) =
∫ 1

0

∫
ω1

f(x, y,Φt(s))dxds =
∫ 1

0

∫
ω1

u(x, y, s, t)dxds. (3.3)

One takes un(x, y) := u(x, y, [nx1], [ny1]) (here [z], with z ∈ R, represents the fractional part of z and, by x1, we
represent the first component of x). By Riemann-Lebesgue theorem it turns out that un gives rise to the Young
measure ν. By a similar argument, the sequence wn defined by wn(y) := g(y, [ny1]) gives rise to the Young
measure µ. Having in mind the definition of the sequence vn(y) :=

∫
ω1
un(x, y)dx, it turns out that vn − wn

converges uniformly to 0, and since wn gives rise to the Young measure µ, so does the sequence vn, and the
proof is complete. �

4. Auxiliary results

Remark 4.1. Given a finite positive measure µ on [α, β], µ : B([α, β])→ R+, there exists a measurable function
f : [0, µ([α, β])] → [α, β] that transports the Lebesgue measure on [0, µ([α, β])] into µ, i.e. µ(B) = L1(f−1(B))
for all B in B([α, β]). We can take for instance the nonincreasing function that is given by

f(x) := sup{t ∈ [α, β] : µ([t, β]) > x}·

The following two properties are to be used in the proof of Lemma 4.4.

Property 4.2. Consider a finite positive measure θ on Ω×Ω′ with projΩ′θ = ν. If the measure ν is absolutely
continuous with respect to a positive measure l, dν(y) = τ(y)dl(y) for a function τ ∈ L1

l (Ω
′), then θ may be

disintegrated with respect to l according to the formula

dθ(x, y) = θly(x)dl(y),

where θly(x) = τ(y)θy(x) and (θy)y∈Ω′ is the disintegration of θ with respect to ν.

Let (Ω,m) and (Ω′, l) be two measure spaces with the same total mass (m(Ω) = l(Ω′) < +∞), m and l being
positive measures.

Property 4.3. If f : Ω → R and g : Ω′ → R are integrable functions such that f(x) < g(y) for all x ∈ Ω and

y ∈ Ω′, then
∫

Ω

f(x)dm(x) <
∫

Ω′
g(y)dl(y).

Lemma 4.4. Given two measurable functions u : Ω → [α, β] and v : Ω′ → [α, β] such that for all continuous

and convex functions Φ : [α, β] → R,
∫

Ω′
Φ(v(y))dl(y) ≤

∫
Ω

Φ(u(x))dm(x) holds. There exists then a positive

measure θ, on Ω×Ω′, whose projections on Ω and Ω′ are m and l, respectively, and such that l-almost everywhere
in Ω′

v(y) =
∫

Ω

u(x)dθy(x),

where (θy)y∈Ω′ is the disintegration of θ with respect to l.
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This result is a consequence of the results obtained by Ryff in [7] and [8] regarding equivalent characterizations,
in terms of doubly stochastic operators, for the preorder relation ≺ between functions. Lemma 4.4 is also very
close to Cartier’s theorems stated in terms of dilatations (see Ths. 1 and 2 in [4] and Ths. 35 and 36 in [6],
p. 288). We shall give a direct (sketched) proof.

The proof is to be done in 3 steps.

Step 1.
Denote by Θ the set of positive measures θ on Ω× Ω′ such that the projections of θ on Ω and Ω′ are m and l,
respectively. Θ is a subset of the linear space of measures on Ω×Ω′. The set Θ is compact with respect to the
weak topology of measures.

Let us define for each θ ∈ Θ the function w(y) =
∫

Ω
u(x)dθy(x) where (θy)y∈Ω′ is the disintegration of θ with

respect to l. Note that the dependency of w on θ is linear. Let us introduce the functional J : Θ→ R+,

J(θ) =
∫

Ω′
(v − w)2dl(y).

J depends on θ through w, and, due to the lower semicontinuity of the norm in L2
l (Ω
′), it turns

out that J is lower semicontinuous. Since Θ is compact, J attaines its minimum, i.e. there exists θ0 ∈ Θ
such that J(θ0) = infθ∈Θ J(θ). Denote by w0(y) :=

∫
Ω
u(x)dθ0

y(x) the function corresponding to θ0. We shall
prove that w0 = v.

Step 2.
θ0 has the following property: if A1 and A2 are subsets of Ω such that

u(x1) < u(x2) for all x1 ∈ A1, x2 ∈ A2

and if B1 and B2 are subsets of Ω′ such that

v(y1)− w0(y1) < v(y2)− w0(y2) for all y1 ∈ B1, y2 ∈ B2,

then, either θ0(A1 ×B2) = 0 or θ0(A2 ×B1) = 0. Otherwise, if θ0(A1 ×B2) > 0 and θ0(A2 ×B1) > 0 one can
increase θ0 in the sets A1×B1 and A2×B2 and decrease θ0 in the sets A1×B2 and A2×B1 by maintaining the
same projections m and l on Ω and Ω′, respectively, and obtain a smaller value for J . Indeed, assuming that
θ0(A1 ×B2) > 0 and θ0(A2 ×B1) > 0 we can choose two measures on Ω×Ω′, θ12 and θ21 such that suppθ12 ⊂
A1 ×B2, θ12 ≤ θ0 |A1×B2 , suppθ21 ⊂ A2 ×B1, θ21 ≤ θ0 |A2×B1 and θ12(A1 ×B2) = θ21(A2 ×B1) = γ > 0.

Denote µ1 := projΩθ12 (suppµ1 ⊂ A1), ν2 := projΩ′θ12 (suppν2 ⊂ B2), µ2 := projΩθ21 (suppµ2 ⊂ A2),
ν1 := projΩ′θ

21 (suppν1 ⊂ B1). Note that µ1(A1) = ν2(B2) = µ2(A2) = ν1(B1) = γ.
Let us define θ11 := 1

γµ1 ⊗ ν1, θ22 := 1
γµ2 ⊗ ν2 and note that suppθ11 ⊂ A1 ×B1 and suppθ22 ⊂ A2 ×B2.

Consider θt := θ0 + t
(
θ11 − θ12 − θ21 + θ22

)
. For t ∈ [0, 1] the measure θt is positive since θ12 ≤ θ0 and θ21 ≤

θ0 on the disjoint sets A1×B2 and, respectively, A2×B1. Calculating the projection of θt on Ω we have for every
A ∈ B(Ω) that θt(A×Ω′) = θ0(A×Ω′) + t

(
θ11(A× Ω′)− θ12(A× Ω′)− θ21(A× Ω′) + θ22(A× Ω′)

)
= m(A) +

t
(

1
γµ1(A)ν1(Ω′)− θ12(A×B2)− θ21(A×B1) + 1

γµ2(A)ν2(Ω′)
)

= m(A)+t
(

1
γµ1(A)ν1(B1)− µ1(A) − µ2(A)+

1
γµ2(A)ν2(B2)

)
= m(A), that is projΩθt = m and by similar arguments we obtain also that projΩ′θt = l.

Therefore θt ∈ Θ for t ∈ [0, 1].
Let us calculate J(θt) in order to evaluate the derivative d

dtJ(θt) |t=0. Let us make first some remarks useful
to the computations. θ21 ≤ θ0 on A2 × B1, consequently, their projections satisfy ν1 ≤ l and therefore ν1

is absolutely continuous with respect to l. According to Property 4.2 we can disintegrate θ11 and θ21 with
respect to l. Similar arguments employed with the measure ν2 permit us to conclude that θ12 and θ22 may be
disintegrated with respect to l. In the following, by (θ̄11

y ), (θ̄12
y ), (θ̄21

y ) and (θ̄22
y ), we denote the disintegrations
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with respect to l of θ11, θ12, θ21 and θ22, respectively.

J(θt) =
∫

Ω′
(v(y)−

∫
Ω

u(x)dθty(x))2dl(y)

=
∫

Ω′

(
v(y)− w0(y)− t

(∫
Ω

u(x)dθ̄11
y (x) −

∫
Ω

u(x)dθ̄12
y (x)

−
∫

Ω

u(x)dθ̄21
y (x) +

∫
Ω

u(x)dθ̄22
y (x)

))2

dl(y).

Since in the above expression the integrand is a polynomial of degree 2 in t, we obtain that

d

dt
J(θt) |t=0 = 2

∫
Ω′

(v(y)− w0(y))
(∫

Ω

u(x)dθ̄11
y (x)−

∫
Ω

u(x)dθ̄12
y (x)

−
∫

Ω

u(x)dθ̄21
y (x) +

∫
Ω

u(x)dθ̄22
y (x)

)
dl(y)

= 2
(∫

Ω×Ω′
u(x)δv(y)dθ̄11(x, y) −

∫
Ω×Ω′

u(x)δv(y)dθ̄12(x, y)

−
∫

Ω×Ω′
u(x)δv(y)dθ̄21(x, y) +

∫
Ω×Ω′

u(x)δv(y)dθ̄22(x, y)
)
,

where δv(y) := v(y) − w0(y) and we had in mind the disintegration formulae for θ11, θ12, θ21 and θ22 with
respect to l.

Let (θ11
y ) and (θ21

y ) be the disintegrations of θ11 and θ21 with respect to ν1, which is the projection of both
on Ω′. Similarly, let (θ12

y ) and (θ22
y ) be the disintegrations of θ12 and θ22 with respect to ν2. Then

d

dt
J(θt) |t=0 = 2

∫
B1

δv(y)
(∫

A1

1
γ
u(x)dµ1(x)−

∫
A2

u(x)dθ21
y (x)

)
dν1(y)

+ 2
∫
B2

δv(y)
(∫

A2

1
γ
u(x)dµ2(x)−

∫
A2

u(x)dθ12
y (x)

)
dν2(y).

Applying Property 4.3 in each point y ∈ B1 with the function u on A1 and A2, and the probability measures
1
γµ1 on A1 and θ21

y on A2, we obtain that α(y) :=
∫
A1

1
γu(x)dµ1(x) −

∫
A2
u(x)dθ21

y (x) < 0. Similar arguments
lead to β(y) :=

∫
A2

1
γu(x)dµ2(x) −

∫
A2
u(x)dθ12

y (x) > 0. With the above notations we have

d

dt
J(θt) |t=0= 2

(∫
B1

δv(y)α(y)dν1(y) +
∫
B2

δv(y)β(y)dν2(y)
)
. (4.1)

Note that the measures −α(y)dν1 and β(y)dν2 have the same mass. Indeed

−
∫
B1

α(y)dν1(y) =
∫
B1

∫
A2

u(x)dθ21
y (x)dν1(y)−

∫
B1

∫
A1

1
γ
u(x)dµ1(x)dν1(y)

=
∫
A2×B1

u(x)dθ21(x, y)−
∫
A1×B1

u(x)dθ11(x, y) =
∫
A2

u(x)dµ2(x) −
∫
A1

u(x)dµ1(x)
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and ∫
B2

β(y)dν2(y) =
∫
A2×B2

1
γ
u(x)dµ2(x)dν2(y)−

∫
A1×B2

u(x)dθ12(x, y)

=
∫
A2

u(x)dµ2(x) −
∫
A1

u(x)dµ1(x).

Now we can apply Property 4.3 with the function δv on B1 and B2, and with the measures −α(y)dν1 on B1

and β(y)dν2 on B2, respectively, and from (4.1) we obtain that

d

dt
J(θt) |t=0< 0

which contradicts the fact that θ0 is a minimum for J .

Step 3.
Suppose that v(y)− w0(y) 6= 0 on a set of positive l measure. We show then that there exists a real number r
that satisfies: ∫

Ω′
(v(y)− r)+dl(y) >

∫
Ω

(u(x)− r)+dm(x),

which is in contradiction with the hypothesis since Φ(λ) := (λ− r)+ is a continuous convex function (by f+ we
represent the positive part of the function f). The number r is constructed from the following considerations:

Define for all p ∈ R the set Cp := {x ∈ Ω | u(x) > p} × {y ∈ Ω′ | v(y) − w0(y) < 0}. Note that if for some
p1 ∈ R, θ0(Cp1) = 0 then θ0(Cp) = 0 for every p > p1, since Cp ⊂ Cp1 . Let p0 := inf{p ∈ R | θ0(Cp) = 0}.
Then θ0(Cp0) = 0 since Cp0 may be written as Cp0 :=

⋃
nCpn for some sequence pn ↘ p0 and having in mind

that θ0(Cpn) = 0 for each n. For all p < p0, θ0(Cp) > 0 and by Step 2 it turns out that θ0({x ∈ Ω | u(x) ≤
p} × {y ∈ Ω′ | v(y)−w0(y) ≥ 0}) = 0. Taking a sequence pn ↗ p0 we get by employing the same arguments as
above, that θ0({x ∈ Ω | u(x) < p0, v(y)− w0(y) ≥ 0}) = 0.

Analogously, define for all q ∈ R the set Dq := {x ∈ Ω | u(x) < q} × {y ∈ Ω′ | v(y) − w0(y) > 0}
and note that if for some q1 ∈ R, θ0(Dq1) = 0, then θ0(Dq) = 0 for every q < q1 since Dq ⊂ Dq1 . Let
q0 := sup{q ∈ R | θ0(Dq) = 0}. By similar arguments to the ones used above with Cp0 , θ0(Dq0) = 0. Moreover,
using a sequence qn ↘ q0 we obtain also that θ0({x ∈ Ω | u(x) > q0} × {y ∈ Ω′ | v(y)− w0(y) ≤ 0}) = 0.

Note that p0 ≤ q0 otherwise, consider s such that q0 < s < p0. Then θ0(Cs) > 0 and θ0(Ds) > 0 that is,
θ0({x ∈ Ω | u(x) > s} × {y ∈ Ω′ | v(y)− w0(y) < 0}) > 0 and θ0({x ∈ Ω | u(x) < s} × {y ∈ Ω′ | v(y)− w0(y) >
0}) > 0 which contradicts Step 2.

Consider now r = q0 (any number between p0 and q0 may be taken). Let us evaluate∫
Ω

(u(x)− q0)+dm(x) =
∫

Ω×Ω′
(u(x)− q0)+dθ

0(x, y) =
∫
{x|u>q0}×
{y|v−w0>0}

(u(x) − q0)dθ0(x, y), (4.2)

where for the last equality we had in mind the above deduced relation θ0({x ∈ Ω | u(x) > q0} × {y ∈ Ω′ |
v(y)− w0(y) ≤ 0}) = 0.

In order to evaluate
∫

Ω′(v(y)− q0)+dl(y) let us first make the following analysis:
In the set {y ∈ Ω′ | v(y) − w0(y) < 0}, since θ0(Cp0) = 0 i.e. θ0 ({x ∈ Ω | u(x) > p0} × {y ∈ Ω′ | v(y)

−w0(y) < 0}) = 0, and having in mind the definition w0 :=
∫

Ω u(x)dθ0
y(x), it turns out that w0(y) ≤ p0 and

therefore v(y) < w0(y) ≤ p0 ≤ q0.
In the set {y ∈ Ω′ | v(y) − w0(y) = 0}, since θ0({x ∈ Ω | u(x) < p0} × {y ∈ Ω′ | v(y) = w0(y)}) = 0

and θ0({x ∈ Ω | u(x) > q0} × {y ∈ Ω′ | v(y) = w0(y)}) = 0 as subsets of {x ∈ Ω | u(x) < p0} × {y ∈ Ω′ |
v(y)−w0(y) ≥ 0} and respectively, {x ∈ Ω | u(x) > q0}×{y ∈ Ω′ | v(y)−w0(y) ≤ 0}, we have that w0 ∈ [p0, q0]
and in particular v(y) ≤ q0.
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In the set {y ∈ Ω′ | v(y)− w0(y) > 0}, since θ0(Dq0) = 0 we obtain that w0(y) ≥ q0 and hence v(y) > q0.
So the only points where (v − q0)+ does not vanish are {y ∈ Ω′ | v(y) − w0(y) > 0} and in this set we have

v(y) > w0(y) ≥ q0.
Now we can evaluate

∫
Ω′(v(y)− q0)+dl(y) as follows, where the first inequality occurs applying Property 4.3

with the functions v and w0 on Ω′ and with the same measure l:∫
Ω′

(v(y)− q0)+dl(y) =
∫
{y|v−w0>0}

(v(y)− q0)dl(y) >
∫
{y|v−w0>0}

(w0(y)− q0)dl(y)

=
∫
{y|v−w0>0}

(∫
Ω

u(x)dθ0
y(x)− q0

)
dl(y)

=
∫

Ω×{y|v−w0>0}
(u(x)− q0)dθ0(x, y) ≥

∫
{x|u>q0}×
{y|v−w0>0}

(u(x)− q0)dθ0(x, y). (4.3)

Then (4.2) and (4.3) yield the contradiction. �
The following lemma is the most important ingredient in the proof of Theorem 3.1. Tartar suggested the

statement below and the main idea of its proof as well.
The domain ω2 in the sequel is as in Theorem 3.1.

Lemma 4.5. Given a sequence vn : ω2 → [α, β], assume that it gives rise to the Young measure µ = (µy). One
defines a function g : ω2 × (0, 1) → [α, β] such that g(y, ·) is nonincreasing and its distribution measure is µy.
Then, given θ ∈ [0, 1], for all sequences χn : ω2 → {0, 1} such that χn ⇀ θ, up to a subsequence, we have that

weak lim
n
χnvn ≤

∫ θ

0

g(y, s)ds. (4.4)

Moreover, there exists a sequence χ̄n : ω2 → {0, 1}, χ̄n ⇀ θ such that, up to a subsequence

χ̄nvn ⇀

∫ θ

0

g(y, s)ds. (4.5)

Proof. Consider a real number θ ∈ [0, 1] arbitrarily fixed and consider a sequence of characteristic functions
χn ⇀ θ. Denote by π the Young measure associated to the pair (vn, χn). So π = (πy)y∈ω2 is a measure
on [α, β] × {0, 1}, where πy = π1

y ⊗ δχ=0 + π2
y ⊗ δχ=1. The projection of πy on {0, 1} is (1 − θ)δ0 + θδ1 and

the projection of πy on [α, β] is µy. Therefore µy = π1
y + π2

y and since π1
y and π2

y are positive measures, it
turns out that π2

y is absolutely continuous with respect to µy. Then by Radon-Nikodym theorem we have that
dπ2

y(v) = ηydµy(v) where ηy is a positive function in L1
µy([α, β]) such that 0 ≤ ηy ≤ 1 µy-almost everywhere

in [α, β].
The weak limit of χn is θ so π2

y([α, β]) = θ. The weak limit of χnvn is calculated as follows:

χnvn ⇀

∫
χvdπy(χ, v) =

∫
χvd(π1

y ⊗ δχ=0) +
∫
χvd(π2

y ⊗ δχ=1) =
∫
vdπ2

y(v) =
∫ θ

0

h(y, s)ds, (4.6)

where h : ω2 × (0, θ) → [α, β] is a nonincreasing function whose distribution measure is π2
y. Consider h, for

instance, given by
h(y, s) := sup{x ∈ [α, β] : π2

y(]x, β]) > s}·
Since for g one can take the following similar definition

g(y, s) := sup{x ∈ [α, β] : µy(]x, β]) > s},
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having in mind that π2
y ≤ µy, one obtains that for all y ∈ ω2, h(y, s) ≤ g(y, s), for L1 almost every s ∈]0, θ[.

Thus
∫ θ

0 h(y, s)ds ≤
∫ θ

0 g(y, s)ds and then (4.6) implies (4.4).
We prove in the sequel that the equality is reached, up to a subsequence, that is, there exists a sequence

χ̄k → θ such that χ̄kvnk →
∫ θ

0 g(y, s)ds, for a subsequence (vnk )k of (vn)n. Note that there exists c ∈ [α, β] such
that µy(]c, β]) ≤ θ ≤ µy([c, β]). Indeed, having in mind the definition of g, it is sufficient to take c = g(y, θ).
Let us define

η̄y(v) =


1, if v > c,

γ, if v = c,

0, if v < c,

where γ =
θ − µy(]c, β])
µy({c}) if µy({c}) 6= 0 and γ may be any number between 0 and 1 if µy({c}) = 0. Then the

following expression writes: ∫
vη̄y(v)dµy(v) =

∫
]c,β]

vdµy(v) + cγµy({c}).

Denote by I the first term and by II the second term in the above sum. Let us calculate the L1-measure of the
set {s : g(y, s) > c}:

L1({s : g(y, s) > c}) =
∫ 1

0

χ{g(y,s)>c}(s)ds =
∫

[α,β]

χ{v>c}(v)dµy(v) = µy(]c, β]).

Since g(y, ·) is nonincreasing it turns out that {s : g(y, s) > c} is the interval with extremities 0 and µy(]c, β]).
Hence for all s ∈]µy(]c, β]), θ], we have that g(y, s) = c and then the first term I yields

I =
∫

]c,β]

vdµy(v) =
∫ 1

0

g(y, s)χ{s:g(y,s)>c}(s)ds =
∫ µy(]c,β])

0

g(y, s)ds.

If µy({c}) 6= 0, the second term gives:

II = c(θ − µy(]c, β])) = c

∫ θ

µy(]c,β)

ds =
∫ θ

µy(]c,β])

g(y, s)ds,

and consequently

I + II =
∫ θ

0

g(y, s)ds.

If µy({c}) = 0 then µy(]c, β]) = θ = µy([c, β]) and II = 0 while

I =
∫

]c,β]

vdµy(v) =
∫ µy(]c,β])

0

g(y, s)ds =
∫ θ

0

g(y, s)ds.

It remains now to show that there exists a sequence χ̄n such that the pair (vn, χ̄n) gives rise to the Young
measure πy = π1

y ⊗ δ0 + π2
y ⊗ δ1 with dπ2

y = η̄ydµy and dπ1
y = (1 − η̄y)dµy. This existence is ensured by the

following lemma applied with K = {0, 1}.
Let Ω be a bounded open set in RN .

Lemma 4.6. Given vn a sequence vn : Ω → [α, β] giving rise to the Young measure µ and given a family of
probability measures (πx,v)(x,v)∈Ω×[α,β] with support in K (K is a bounded subset of Rp), there exists a sequence
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(χn), χn : Ω→ K such that for all continuous functions F : [α, β]×K → R we have, up to a subsequence:

F (vn, χn) ⇀
∫

[α,β]×K
F (v, u)dπx,v(u)dµx(v),

that is the sequence (vn, χn) gives rise to the Young measure π.

The above result generalizes Theorem 5 in [9] (p. 147), and the proof uses analogous arguments.

Proof. Consider the following two sets:

M1 ={π measure on Ω× [α, β]×K such that it is a narrow limit of Young measures

associated to (vn, χ) where χ : Ω→ K is some measurable function}

and
M2 = {π measure on Ω× [α, β]×K,π ≥ 0, suppπ ⊂ Ω× [α, β]×K,projΩ×[α,β]π = µ}·

We prove that equality M1 = M2 holds.
First step. We prove that M1 is convex.
Consider π1, π2, . . . , πq ∈M1. Then each πi is the narrow limit of Young measures associated to pairs (vn, χi)

that is, for all bounded Carathéodory integrands φ,∫
[α,β]×K

φ(x, v, λ)dπi(v, λ) = lim
m
φ(x, vm(x), χi(x)).

We shall show that π :=
∑q
i=1 πiθi belongs to M1, where θi are real nonnegative numbers such that

∑q
i=1 θi

= 1. By Theorem 3 in [9], there exist the following sequences of characteristic functions ψi,n : Ω → {0, 1}
such that

∑q
i=1 ψi,n = 1 and ψi,n ⇀ θi. Consider χn :=

∑q
i=1 ψi,n(x)χi(x). Then φ(x, vm(x), χn(x)) =∑q

i=1 φ(x, vm(x), χi(x))ψi,n(x) and passing to the limit first in m and then in n, one obtains that, for all
bounded Carathéodory integrands φ,

lim
n

lim
m
φ(x, vm(x), χn(x)) =

∫
[α,β]×K

φ(x, v, λ)dπ(v, λ)

and consequently π ∈M1.
Second step. We prove that conv(M1) = M2. We know that in order to find the closed convex hull of M1

we need only to consider the affine continuous functions which are positive on M1 (by Hahn-Banach theorem).
But an affine continuous function on the space of measures on Ω× [α, β]×K has the following form

π → 〈π,Φ0(x, v, λ)〉 + δ

where Φ0 is continuous bounded and δ ∈ R. Such affine continuous function is positive on M1 if

〈π,Φ0(x, v, λ)〉 + δ ≥ 0

for all π ∈M1. This is equivalent to

lim
m

∫
Ω

Φ0(x, vm(x), χ(x))dx + δ ≥ 0 (4.7)
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for all χ : Ω→ K. Define Ψ0(x, v) := infλ∈K{Φ0(x, v, λ)}. Then Ψ0 is continuous bounded and therefore (4.7)
is equivalent to

lim
m

∫
Ω

Ψ0(x, vm(x))dx + δ ≥ 0.

Let Φ0(x, v, λ) = Ψ0(x, v) + χ0(x, v, λ), with χ0(x, v, λ) ≥ 0. So, we have that

conv(M1) ={π measure that satisfies 〈π,Φ0〉+ δ ≥ 0 for all Φ0 and δ satisfying

Φ0 = Ψ0 + χ0, for some function χ0 ≥ 0, and 〈Ψ0, µ〉+ δ ≥ 0} ·

Now it remains to prove that the above conditions characterize M2.
1) Take Ψ0 = 0 and δ = 0. Then 〈π, χ0〉 ≥ 0 for all χ0 ≥ 0. Therefore π ≥ 0.
2) If χ0 = 0 in Ω × [α, β] ×K then χ0 ≥ 0 and −χ0 ≥ 0. Then 〈π, χ0〉 ≥ 0 and 〈π,−χ0〉 ≥ 0 and hence
〈π, χ0〉 = 0, therefore suppπ ⊂ Ω× [α, β] ×K.

3) Consider δ = −〈Ψ0, µ〉 and χ0 = 0. Then 〈π,Ψ0〉 + δ ≥ 0 for all continuous bounded function Ψ0 such
that δ = −〈Ψ0, µ〉. So, 〈π,Ψ0〉 ≥ 〈µ,Ψ0〉. On the other hand 〈π,−Ψ0〉 − δ ≥ 0. Then 〈π,Ψ0〉 ≥ 〈µ,Ψ0〉.
Hence 〈π,Φ0〉 = 〈µ,Ψ0〉, and consequently projΩ×[α,β]π = µ.

From 1), 2) and 3) above it turns out that conv(M1) ⊂M2.
Conversely, let us prove that M2 ⊂ conv(M1). Consider π ∈ M2. Then 〈π,Φ0〉 + δ ≥ 0 since 〈π,Φ0〉 =

〈π, χ0〉+ 〈π,Ψ0〉, 〈π, χ0〉 ≥ 0 and 〈π,Ψ0〉 = 〈µ,Ψ0〉 ≥ 0. Hence π ∈ conv(M1).
Thus we obtain the existence of a sequence χ̄m : Ω→ K that satisfies

weak lim
m

weak lim
n
φ(x, vn(x), χ̄m(x)) =

∫
[α,β]×K

φ(x, v, λ)dπx(v, λ),

for all bounded Carathéodory integrands φ. One can extract then a diagonal subsequence nk such that:

weak lim
k
φ(x, vnk (x), χ̄nk(x)) =

∫
[α,β]×K

φ(x, v, λ)dπx(v, λ).
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