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GRADIENT FLOWS OF NON CONVEX FUNCTIONALS IN HILBERT SPACES
AND APPLICATIONS ∗

Riccarda Rossi1 and Giuseppe Savaré1

Abstract. This paper addresses the Cauchy problem for the gradient flow equation in a Hilbert
space H {

u′(t) + ∂�φ(u(t)) � f(t) a.e. in (0, T ),

u(0) = u0,

where φ : H → (−∞,+∞] is a proper, lower semicontinuous functional which is not supposed to
be a (smooth perturbation of a) convex functional and ∂�φ is (a suitable limiting version of) its
subdifferential. We will present some new existence results for the solutions of the equation by exploiting
a variational approximation technique, featuring some ideas from the theory of Minimizing Movements
and of Young measures.
Our analysis is also motivated by some models describing phase transitions phenomena, leading to
systems of evolutionary PDEs which have a common underlying gradient flow structure: in particular,
we will focus on quasistationary models, which exhibit highly non convex Lyapunov functionals.
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1. Introduction and main results

The aim of this paper is to study the existence and the approximation of strong solutions of the gradient
flow equation {

u′(t) + ∂�φ(u(t)) � f(t) a.e. in (0, T ),
u(0) = u0,

(GF)

associated with the limiting subdifferential ∂�φ : H → 2H of a proper and lower semicontinuous functional
φ : H → (−∞,+∞] defined in a (separable) Hilbert space H with scalar product 〈·, ·〉 and norm | · |; D(φ) :={
v ∈ H : φ(v) < +∞

}
will denote the proper domain of φ.
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The limiting subdifferential ∂�φ is obtained by taking a sequential strong-weak closure in H ×H of the graph
of the Fréchet subdifferential ∂φ, which is the (possibly multivalued) operator defined for every v ∈ D(φ) by

∂φ(v) :=
{
ξ ∈ H : φ(w) − φ(v) − 〈ξ, w − v〉 ≥ o(|w − v|) as w → v

}
, (1.1)

where the above Landau’s notation should be understood as

lim inf
w→v

φ(w) − φ(v) − 〈ξ, w − v〉
|w − v| ≥ 0. (1.2)

Thus, a vector ξ belongs to the limiting subdifferential ∂�φ at v ∈ D(φ) if there exist sequences

vn, ξn ∈ H such that ξn ∈ ∂φ(vn), vn → v, ξn ⇀ ξ, sup
n∈N

φ(vn) < +∞ as n ↑ +∞. (1.3)

As usual in multivalued analysis, we will denote by D(∂φ), D(∂�φ) the proper domains

D(∂φ) :=
{
v ∈ H : ∂φ(v) 	= ∅

}
, D(∂�φ) :=

{
v ∈ H : ∂�φ(v) 	= ∅

}
. (1.4)

Before discussing the motivations for introducing and studying this kind of subdifferential operators (see [25,33],
and the monograph [37], Chap. VIII, where analogous notions are introduced for different purposes) and the
related evolution equations, let us first recall the well-established theories that cover some simpler situations.

The convex case: existence and regularity. When φ is convex, the Fréchet (and the limiting) subdifferential
coincides with the usual subdifferential of convex analysis, and it can be characterized by

ξ ∈ ∂φ(v) ⇔ v ∈ D(φ), φ(w) − φ(v) −
〈
ξ, w − v

〉
≥ 0 ∀w ∈ H . (1.5)

Since φ is lower semicontinuous (l.s.c., in the sequel), taking the strong-weak closure of the graph of ∂φ in
H × H does not modify it, since

vn → v, ξn ⇀ ξ, ξn ∈ ∂φ(vn) ⇒ ξ ∈ ∂φ(v), so that ∂�φ ≡ ∂φ. (1.6)

It is well-known that ∂φ is a (possibly multivalued) maximal monotone operator ; existence, uniqueness, and re-
gularity of the solution of (GF) follow from the well-known theory developed by Komura [24], Crandall-Pazy [18],
Brézis [11]: we refer to the monograph [12]. In particular, if

u0 ∈ D(φ), f ∈ L2(0, T ; H ), (data)

then the solution u belongs to H1(0, T ; H ), for a.e. t ∈ (0, T ) its derivative

u′(t) is the projection of the origin on the affine hull aff
(
f(t) − ∂φ(u(t))

)
,

thus realizes the minimal section principle: u′(t) =
(
f(t) − ∂φ(u(t))

)◦
,

(1.7)

where for every subset A ⊂ H we set

aff A :=
{∑

i

tiai : ai ∈ A, ti ∈ R,
∑
i

ti = 1
}
, (1.8)

|A◦| := inf
ξ∈A

|ξ|, A◦ :=
{
ξ ∈ A : |ξ| = |A◦|

}
; (1.9)
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moreover, u satisfies the energy identity

φ(u(T )) +
∫ T

0

|u′(t)|2 dt = φ(u0) +
∫ T

0

〈f(t), u′(t)〉dt, (1.10)

which is an immediate consequence of the Chain Rule

if u ∈ H1(0, T ; H ), ξ ∈ L2(0, T ; H ), ξ(t) ∈ ∂φ(u(t)) for a.e. t ∈ (0, T )

then φ ◦ u ∈ AC(0, T ), d
dtφ(u(t)) =

〈
ξ(t), u′(t)

〉
for a.e. t ∈ (0, T ).

(1.11)

The convex case: approximation. Approximating (GF) by the implicit Euler scheme

U0
τ := u0,

Unτ − Un−1
τ

τ
+ ∂φ(Unτ ) � Fnτ n = 1, . . . , N, (1.12)

is one of the possible ways of proving the above results, and provides a useful constructive method which is
interesting by itself: here τ > 0 is the time step with Nτ = T , Fnτ are suitable approximations of the values
of f in the interval ((n− 1)τ, nτ ], e.g.,

Fnτ :=
1
τ

∫ nτ

(n−1)τ

f(t) dt, (1.13)

and the sequence {Unτ }Nn=1 is uniquely determined by solving (1.12) recursively, starting from the assigned value
of U0

τ .
If we denote by Uτ (t) the piecewise linear interpolant taking the value Unτ at tn, several kinds of more

and more refined estimates of the error |u(t) − Uτ (t)| could be derived, starting from the pioneering ones of
Crandall-Liggett [17]: we mention [12], Cor. 4.4, the optimal a priori estimates of [4, 40, 41], and the optimal
a posteriori estimates of [34] for even non uniform meshes. In our case, assuming for simplicity φ ≥ 0, it is
possible to prove the uniform Cauchy estimates (see [34])

max
t∈[0,T ]

|Uη(t) − Uτ (t)|2 ≤ 3(τ + η)
(
φ(u0) +

∫ T

0

|f(t)|2 dt
)
, (1.14)

thus showing that the family of functions Uτ is uniformly convergent to a continuous function u as τ ↓ 0. Note
that (1.14), the discrete energy estimate analogous to (1.10)

φ(Unτ ) + τ
N∑
k=1

∣∣∣∣Ukτ − Uk−1
τ

τ

∣∣∣∣2 ≤ φ(u0) + τ
N∑
k=1

〈
F kτ ,

Ukτ − Uk−1
τ

τ

〉
, (1.15)

and the strong-weak closure of the graph of ∂φ (1.6) are the main ingredients to show that the uniform limit u
of Uτ as τ ↓ 0 belongs to H1(0, T ; H ) and is the (unique) solution of (GF).

Quadratic perturbations of convex functions. The previous results extend (up to an exponential factor,
which modifies the constant in (1.14)) to λ-convex functionals, i.e., quadratic perturbations of convex functions
satisfying

∃λ ≥ 0 : v �→ φ(v) +
λ

2
|v|2 is convex. (1.16)

Of course, in this case the characterization (1.5) of the Fréchet subdifferential is affected by λ, namely

ξ ∈ ∂φ(v) ⇔ v ∈ D(φ), φ(w) − φ(v) −
〈
ξ, w − v

〉
≥ −λ

2
|w − v|2 ∀w ∈ H ,
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which shows that in the λ-convex case we can always choose the infinitesimal term o(r) := −λ
2 r

2 in (1.1); of
course, this characterization degenerates as λ ↑ +∞.

It is not hard to check that any function φ which admits the representation

φ(v) = ψ1(v) − ψ2(v), with ψ1 convex, ψ2 ∈ C1,1(H ), (1.17)

satisfies (1.16), simply by taking as λ the Lipschitz constant of the (Fréchet) differential Dψ2; further, (1.17)
yields the decomposition

∂φ(v) = ∂ψ1(v) −Dψ2(v) ∀v ∈ D(∂φ). (1.18)

C1 perturbation of convex functions. When φ is not a quadratic perturbation of a convex function any
more, things become remarkably more difficult. It was one of the main achievements of the theory of Curves
of Maximal Slope, developed in a series of papers originating from [20] and culminating in [29] (but see also
the more recent [15] and the presentations [1, 3]), to partially extend the previous existence results to the case
in which φ admits the decomposition (1.17), where ψ2 is now simply of class C1(H ), provided f ≡ 0 and φ
satisfies the coercivity/compactness property

∃τ∗ > 0 : v �→ φ(v) +
1

2τ∗
|v|2 has compact sublevels. (comp)

In this case, the approximation algorithm (1.12) has to be rewritten in a variational form, observing that (1.12)
is in fact the Euler equation associated with the functional

Φ(τ, Fnτ , U
n−1
τ ;V ) :=

1
2τ

∣∣V − Un−1
τ

∣∣2 + φ(V ) − 〈Fnτ , V 〉. (1.19)

Then, (1.12) is replaced by the variational iterative scheme⎧⎨⎩
U0
τ := u0 is given; whenever U1

τ , . . . , U
n−1
τ are known,

find Unτ ∈ H : Φ(τ, Fnτ , Un−1
τ ;Unτ ) ≤ Φ(τ, Fnτ , Un−1

τ ;V ) ∀V ∈ H ,
(1.20)

which a fortiori also yields a solution Unτ of (1.12), since for every functional ψ in C1(H ), the Fréchet subdif-
ferential obeys the usual calculus rules

∂(φ+ ψ)(v) = ∂φ(v) +Dψ(v) ∀v ∈ H ,

v0 minimizes φ+ ψ in H ⇒ v0 ∈ D(∂φ), ∂φ(v0) +Dψ(v0) � 0.
(1.21)

This variational approach has been independently applied to different kinds of problems (see e.g. [22, 26, 30]),
and has been proposed (in an even more general formulation) as a possible general method to study Gradient
Flows in [19] (see also the lecture notes [1, 3]).

Unlike the convex framework, solutions to (1.20) are not unique, in general: in any case, we call discrete
solution any piecewise constant interpolant Uτ of a sequence of discrete values solving (1.20), i.e., Uτ (t) := Unτ
if t ∈ ((n− 1)τ, nτ ]. Following [19], we say that

u is a generalized Minimizing Movement associated with the scheme (1.20) if there exist a
subsequence τk ↓ 0 and a corresponding family of discrete solutions Uτk

such that

lim
k↑+∞

Uτk
(t) = u(t) in H , ∀t ∈ [0, T ]. (1.22)

We denote by GMM(Φ;u0, f) the collection of the generalized Minimizing Movements starting
from u0 and with forcing term f .
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In order to recover information on the time derivative of the limit functions, we will also often consider the
piecewise linear interpolant Uτ of the values Unτ .

Although it is not easy to present a short overview of the wide and complex set of assumptions considered
in [29], following [1] we observe that the crucial assumption of their approach is the strong-weak closedness of
the graph of (∂φ, φ) in H × H × R, i.e.,

ξn ∈ ∂φ(vn), rn = φ(vn)
vn → v, ξn ⇀ ξ, rn → r

}
⇒ ξ ∈ ∂φ(v), r = φ(v), (1.23)

which in particular yields ∂�φ ≡ ∂φ. Under (1.23), they prove that for each choice of u0 ∈ D(φ) satisfying
(data), GMM(Φ;u0, 0) is not empty and that its elements are solutions of (GF).

Note that (1.23) yields three crucial properties for ∂�φ, which are somehow hidden in the proof of the existence
result in [29]:

∂�φ is convex-valued:

∂�φ(v) is a closed convex subset of H ∀v ∈ D(∂�φ). (conv)

Chain rule: If v ∈ H1(0, T ; H ), ξ ∈ L2(0, T ; H ) with ξ(t) ∈ ∂�φ(v(t)) for a.e. t ∈ (0, T ), and φ ◦ v is
a.e. equal to a function ϕ of bounded variation, then

d
dt
ϕ(t) = 〈ξ(t), v′(t)〉 for a.e. t ∈ (0, T ). (chain1)

Continuity of φ along sequences with equibounded slope:

vn → v, sup
n

(
|∂◦φ(vn)|, φ(vn)

)
< +∞ ⇒ φ(vn) → φ(v) as n ↑ +∞. (cont)

Remark 1.1. We stress once again that if φ is λ-convex, i.e., it fulfills (1.16), then it also satisfies (1.23) and
therefore (conv, chain1, cont); moreover, the chain rule holds in the stronger formulation (1.11).

A more general situation. In this paper, we will show that general existence results can be proved even when
only one of the two assumptions (conv) and (chain1) is supposed to hold; (cont) will play a complementary
role, which will be discussed in each situation. In particular, we can consider functionals whose Fréchet subdif-
ferential is not strongly-weakly closed in the sense of (1.23). Actually, the (strong-weak) closedness of ∂φ may
fail even for simple one-dimensional functionals, as in the case of (cf. also (2.14, 2.17) later on)

H := R, φ(x) :=

{
1
3 (x+ 1)2 x ≤ 0,
1
3 (x− 1)2 x > 0,

= min
{

1
3
(x + 1)2,

1
3
(x− 1)2

}
(1.24)

(see Fig. 1). It is easy to check that ∂φ(x) is reduced to a singleton for x 	= 0, while ∂φ(0) is empty, so that
obviously ∂φ differs from its closure ∂�φ at x = 0, which turns out to be non convex. In turn, note that φ
cannot be decomposed as in (1.17), even if ψ2 is required to be only of class C1(H ).

As we will see in Example 2, this real function provides the simplest one-dimensional caricature of infinite-
dimensional Lyapunov functionals arising in quasistationary models for phase transitions. In spite of its triviality,
it captures two main features, which are typical in those evolution models: the presence of anti-monotone jumps
and non convex sections in the graph of ∂�φ (see Fig. 2). This lack of convexity is a serious difficulty, since in
this general infinite-dimensional setting only weak convergence properties are available for the time derivatives
of any family of approximating solutions to (GF).
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φ

Figure 1. The potential φ of (1.24) is not subdifferentiable at x = 0.

∂φ ∂�φ co(∂�φ)

Figure 2. Fréchet, limiting, and convexified subdifferential of φ

We will see in Example 2 that, even in the finite-dimensional situation, the convexification of ∂�φ (e.g., in
the present case, at x = 0) is often not acceptable, since solutions of the easier relaxed formulation do not solve,
in general, the original one.

We postpone a detailed presentation of some other significant examples to the next section, while here we
are going to present our main abstract results. First of all, we state some natural and general compactness
conditions which guarantee that GMM(Φ;u0, f) is not empty. Recall that Uτ will denote the piecewise linear
interpolant of the discrete values {Unτ }Nn=0.

Lemma 1.2 (Compactness). Let us assume that

φ : H → (−∞,+∞] is proper, lower semicontinuous, and

∃τ∗ > 0 : v �→ φ(v) +
1

2τ∗
|v|2 has compact sublevels,

(comp)

and the data satisfy
u0 ∈ D(φ), f ∈ L2(0, T ; H ). (data)

Then, there exists a constant C > 0 (independent of τ) such that

‖Uτ‖L∞(0,T ;H ) + ‖Uτ‖L∞(0,T ;H ) ≤ C, (1.25)

sup
[0,T ]

φ(Uτ ) ≤ C, (1.26)

‖U ′
τ‖L2(0,T ;H ) ≤ C, ‖Uτ − Uτ‖L∞(0,T ;H ) ≤ C

√
τ , (1.27)

for every 0 < τ ≤ τ∗/10. In particular, GMM(Φ;u0, f) is not empty and every u ∈ GMM(Φ;u0, f) belongs to
H1(0, T ; H ).

The case of a convex-valued limiting subdifferential. Here the main assumption on φ, besides the com-
pactness one (comp), is the convexity of the values of ∂�φ (conv): indeed, conditions (comp) and (conv)
are sufficient in order to prove that every u ∈ GMM(Φ;u0, f) is a solution of (GF) and satisfies a natural
Lyapunov-like inequality, which holds in a stronger form when also (cont) is verified.
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Theorem 1 (Lyapunov solutions). Let us suppose that φ : H → (−∞,+∞], u0, and f satisfy the assumptions
(comp) and (data) of the compactness Lemma 1.2, so that GMM(Φ;u0, f) is not empty. If

∂�φ(v) is a convex closed subset of H for every v ∈ D(∂�φ), (conv)

then any u ∈ GMM(Φ;u0, f) is a solution to (GF) satisfying the Lyapunov inequality∫ t

0

(
1
2
|u′(σ)|2 +

1
2
|(∂�φ(u(σ)) − f(σ))0|2

)
dσ + φ(u(t)) ≤ φ(u0) +

∫ t

0

〈f(σ), u′(σ)〉dσ ∀t ∈ (0, T ). (1.28)

Moreover, if φ complies with the additional continuity assumption (cont), then there exists a negligible set
N ⊂ (0, T ) such that∫ t

s

(
1
2
|u′(σ)|2 +

1
2
|(∂�φ(u(σ)) − f(σ))0|2

)
dσ + φ(u(t)) ≤ φ(u(s)) +

∫ t

s

〈f(σ), u′(σ)〉dσ (1.29)

∀t ∈ (0, T ), s ∈ (0, t) \ N .

Remark 1.3 (Lyapunov inequality). By (1.29), φ ◦ u satisfies the Lyapunov inequality in the distributional
differential form

d
dt
φ(u(t)) ≤ −1

2

∣∣u(t)
∣∣2 − 1

2

∣∣(∂�φ(u(t)) − f(t))◦
∣∣2 + 〈f(t), u′(t)〉 in D ′(0, T ), (1.30)

and there exists a real function of bounded variation ϕ ≥ φ ◦ u, which coincides with φ ◦ u a.e. in (0, T ),
satisfying (1.30) a.e. in (0, T ). When f ≡ 0, (1.30) reduces to

d
dt
φ(u(t)) ≤ −1

2
|u′(t)|2 − 1

2
|∂◦� φ(u(t))|2 ≤ −|u′(t)| · |∂◦� φ(u(t))| in D ′(0, T ),

which is the key point of the metric approach to gradient flows proposed by E. De Giorgi (see the discussion
in [3], Chap. 2). In particular, the map t �→ ϕ(t) is non-increasing on (0, T ). This fact justifies the name of
Lyapunov solutions, introduced by S. Luckhaus [26] for a particular model which can be considered in this more
general framework, see Example 5 later on.

The case of a limiting subdifferential satisfying the Chain Rule. Let us now assume that φ satisfies
the Chain Rule condition (chain1), namely

if v ∈ H1(0, T ; H ), ξ ∈ L2(0, T ; H ), ξ ∈ ∂�φ(v) a.e. in (0, T ),
and φ ◦ v is a.e. equal to a function ϕ of bounded variation, then

d
dt
ϕ(t) = 〈ξ(t), v′(t)〉 for a.e. t ∈ (0, T ).

(chain1)

Theorem 2. Let us suppose that φ : H → (−∞,+∞], u0, f satisfy the assumptions (comp) and (data)
of the compactness Lemma 1.2, so that GMM(Φ;u0, f) is not empty. If the Chain Rule condition (chain1)
and the continuity condition (cont) are satisfied, then every u ∈ GMM(Φ;u0, f) is a solution in H1(0, T ; H )
of (GF), it satisfies for almost every t ∈ (0, T )

u′(t) is the projection of the origin on the affine hull aff
(
f(t) − ∂�φ(u(t))

)
(1.31)

and fulfills the minimal section principle u′(t) = (f(t) − ∂�φ(u(t)))◦, (1.32)

as well as
f(t) − u′(t) belongs to the strong closure of ∂φ(u(t)) in H × H . (1.33)
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Finally, the energy inequality∫ t

s

|u′(σ)|2 dσ + φ(u(t)) ≤ φ(u(s)) +
∫ t

s

〈f(σ), u′(σ)〉dσ (1.34)

holds ∀t ∈ (0, T ), s ∈ (0, t) \ N , N being a negligible subset of (0, T ), and φ ◦ u coincides a.e. in (0, T ) with a
function ϕ ≥ φ ◦ u of bounded variation satisfying

d
dt
ϕ(t) = −

∣∣u′(t)∣∣2 + 〈f(t), u′(t)〉 a.e. in (0, T ). (1.35)

Remark 1.4 (Affine projection and minimal section). Notice that we have retrieved the minimal section
principle (1.32) (in the even stronger formulation (1.31)) in this non convex case as well: even if f(t)−∂�φ(u(t))
in general is not convex, u′(t) is its unique element of minimal norm for a.e. t ∈ (0, T ).

In both the previous theorems, the Lyapunov/energy inequalities (1.29) and (1.34) hold almost everywhere,
and even though the pointwise differential identity (1.35) holds, we cannot exclude that the distributional deriv-
ative of t �→ φ(u(t)) is not absolutely continuous with respect to the Lebesgue measure. Thus, the functional φ
can have essential negative jumps along the solution u. This phenomenon can be circumvented if we reinforce
our Chain Rule condition (chain1) a little bit, mimicking the statement (1.11) for convex functionals. In this
way, we can also avoid to assume the continuity condition (cont).

Theorem 3 (Energy solutions). Let us suppose that φ : H → (−∞,+∞], u0, f satisfy the assumptions (comp)
and (data) of the compactness Lemma 1.2, so that GMM(Φ;u0, f) is not empty.

If φ satisfies the following stronger Chain rule condition

if v ∈ H1(0, T ; H ), ξ ∈ L2(0, T ; H ), ξ ∈ ∂�φ(v) a.e. in (0, T ),

and φ ◦ v is bounded, then φ ◦ v ∈ AC(0, T ) and
d
dt
φ(v(t)) = 〈ξ(t), v′(t)〉 for a.e. t ∈ (0, T ),

(chain2)

then, every u ∈ GMM(Φ;u0, f) is a solution in H1(0, T ; H ) to (GF), fulfilling the affine projection prop-
erty (1.31), the minimal selection (1.32), the strong closure property (1.33), and the energy identity∫ t

s

|u′(σ)|2 dσ + φ(u(t)) = φ(u(s)) +
∫ t

s

〈f(σ), u′(σ)〉ds ∀s, t : 0 ≤ s ≤ t ≤ T. (1.36)

Finally, if {τk} is a decreasing sequence as in (1.22), we also have

U ′
τk

→ u′ in L2(0, T ; H ), φ(Uτk
(t)) = φ(u(t)) ∀t ∈ [0, T ], as k ↑ ∞. (1.37)

Remark 1.5 (W 1,1(0, T ) versus AC(0, T )). If φ complies with a slightly weaker form of (chain2), ensuring
that φ ◦ v ∈ W 1,1(0, T ) instead of φ ◦ v ∈ AC(0, T ), then the previous Theorem 3 still holds, but the energy
identity (1.36) and the convergence (1.37) of φ(Uτk

(t)) hold for every s, t ∈ [0, T ] \ N , N being a negligible
subset of (0, T ].

Remark 1.6 (The metric theory). In a purely metric setting, the role of a suitable chain rule has also been
discussed in [3]: actually, the theory developed therein could be applied to our situation as well, in the case
of a constant source term f . On the other hand, here we take advantage of the linear structure of H and we
combine some ideas of the Minimizing Movements approach with the flexibility of Young measures, obtaining
more precise information in the limit.
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(Dominated) concave perturbations of convex functionals. We conclude this introductory section with a
direct application of Theorems 2 and 3, which shows that even in the cases of (dominated) concave perturbations
of a convex functional we can still prove an existence result for the associated Gradient Flow equation. This
result extends the range of application of the theory of curves of maximal slope and, as it will be clear from
the following Examples 4 and 5, this class of functionals allows for several interesting applications to phase
transition problems.

In fact, we will prove that the class of functionals to which Theorems 2 and 3 apply is closed w.r.t. dominated
concave perturbations. Thus, we will focus on functionals φ admitting the decomposition

φ = ψ1 − ψ2 in D(φ), with

ψ1 : D(φ) → R l.s.c. and satisfying (chain1,2),

ψ2 : co
(
Dφ

)
→ R convex and l.s.c. in D(φ), D(∂�ψ1) ⊂ D(∂ψ2),

(1.38)

where co
(
Dφ

)
denotes the convex hull of D(φ); we shall see that the (corresponding) chain rule (chain1,2)

holds in this case as well, provided that the concave contribution of the term −ψ2 is somehow controlled.

Theorem 4. Let φ : H → (−∞,+∞] be a functional admitting the decomposition (1.38) and satisfying the
compactness assumption (comp) of Lemma 1.2. If

∀M ≥ 0 ∃ρ < 1, γ ≥ 0 such that sup
ξ2∈∂ψ2(u)

|ξ2| ≤ ρ|∂◦�ψ1(u)| + γ

for every u ∈ D(∂�ψ1) with max(φ(u), |u|) ≤M ,
(1.39)

then φ satisfies the (corresponding) Chain Rule property (chain1,2).

We postpone the proof of the above results to Section 4.

Remark 1.7 (Kato’s condition). Let us point out that condition (1.39) is analogous to a condition, proposed in
[12], Chapter II, which ensures that the sum of two maximal monotone operators is still maximal. In the linear
framework, this corresponds to the well-known Kato’s condition, ensuring the closedness of a perturbation of a
closed operator [23], IV, Theorem 1.1.

Remark 1.8 (Equivalent norms). The choice of the norm | · |H in (1.39) is not essential: Theorem 4 still holds
if we consider another equivalent (even non hilbertian) norm in H .

Remark 1.9 (ψ1, ψ2 convex). Conditions (1.38) and (1.39) get slightly simpler when ψ1, ψ2 are convex: in fact,
(1.38) reads

φ = ψ1 − ψ2 in D(φ) with

ψ1, ψ2 : D(φ) → R l.s.c. and convex, D(∂ψ1) ⊂ D(∂ψ2),
(1.38’)

whereas in (1.39) the limiting subdifferential of ψ1 coincides with the Fréchet subdifferential ∂ψ1. In this case,
φ satisfies the chain rule (chain2) in the stronger formulation of Remark 1.5.

Plan of the paper. In the next section, we discuss some examples of ordinary differential inclusions and PDE’s
systems, which motivate our interest for the gradient flow equation (GF). In particular, Example 2, though
finite-dimensional, will clearly illustrate the difficulties arising from the lack of convexity and, hence, the role
of our variational approach.

The classical variational formulation of the Stefan problem (Ex. 3) is then briefly recalled, mainly to point
out the role of the dual Sobolev space H−1(Ω) and to introduce the basic structure of the functional φ, which
is common to the other more complicated models, discussed in the last two examples. The fourth one presents
new general results for quasistationary phase field models, extending previous contributions of [35] and [43]; the
last example deals with the Stefan-Gibbs-Thomson problem and shows how to retrieve S. Luckhaus’ theorem as
a consequence of the abstract theory. One of the most interesting points, here, is the unifying approach which
is provided by the gradient flow viewpoint (see also [39]).
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The third section collects two technical tools, which will be essential in the proofs of the main theorems: the
fundamental theorem for Young measures in Hilbert space with respect to weak topologies, and their interplay
with more refined forms of the Chain Rule properties (chain1,2).

Section 4 is devoted to the proof of our main abstract results. It is divided in some parts, each one focusing
on a particular aspect which is of independent interest. Refined estimates for the stationary problems (1.20) and
for their evolutionary counterparts, the introduction of a new “variational interpolant” of the discrete values,
the asymptotic description of the limits and their energy inequalities in terms of Young measures, and the Chain
Rule are the main points of the argument.

Finally, in Section 5 we present new general results for diffusion problems with quasistationary non monotone
relations, which cover all the examples discussed in Section 2 and can be applied to many different situations.

2. Examples

2.1. Finite-dimensional examples

Example 1 (Anti-monotone differential inclusions). Let us consider the following Cauchy problem for an
anti-monotone differential inclusion in H := R

d{
x′(t) − A(x(t)) � 0 t > 0,

x(0) = x0,
(2.1)

where A : R
d → 2R

d

is a cyclically monotone (multivalued) operator such that

A(x) is non empty and compact for every x ∈ R
d, and (2.2)

ξn ∈ A(xn), xn → x, ξn → ξ ⇒ ξ ∈ A(x), (2.3)

i.e., A has closed graph in R
d ×R

d. This problem was addressed in [10], where the local existence of a solution
to (2.1) is obtained by means of an explicit discretization technique; if A is linearly growing at infinity, the
solution is also global. Similar ideas have also been applied in a much more general context in [15].

A gradient flow approach. Let us assume this linear growth condition, and let us introduce a proper, l.s.c.,
and convex function ψ : R

d → R such that (see [36], Th. V.24.8)

∅ 	= A(x) ⊂ ∂ψ(x) ∀x ∈ R
d. (2.4)

In particular, D(ψ) = R
d, ψ is locally Lipschitz, and it grows at most quadratically as |x| ↑ +∞: thus,

Theorems 3 and 4 (applied to the functional φ := −ψ: note that the chain rule (chain2) trivially holds for −ψ,
since ψ is convex and ∂�(−ψ) ⊂ −∂ψ), yield the existence of a global solution to the gradient flow equation (GF),
which is also a solution to (2.1), since it is not difficult to check that

∂�(−ψ)(x) ⊂ −A(x) ∀x ∈ R
d. (2.5)

Indeed, as A is closed in R
d × R

d, (2.5) is a consequence of

∂(−ψ)(x) ⊂ −A(x) ∀x ∈ R
d. (2.6)

To this aim, we note that a vector ξ belongs to ∂(−ψ)(x) iff ψ is differentiable at x and

−∂ψ(x) = {−Dψ(x)} = {ξ}.

Now, (2.4) yields A(x) = {Dψ(x)} for every x ∈ D(∂(−ψ)), and thus (2.6) is trivially satisfied.
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Remark 2.1. The previous argument also shows that −∂�(−ψ) provides the minimal closed multivalued map
among those satisfying

A(v) ⊂ ∂ψ(v) ∀v ∈ H ; D(A) ⊃ {v : ψ is differentiable at v}. (2.7)

Example 2 (differential equations and non monotone couplings). Let F,G ∈ C1(Rd) be two given functions
satisfying

lim inf
|u|↑+∞

F (u)
|u|2 > −∞, lim inf

|χ|↑+∞
G(χ)
|χ| = +∞.

We consider the following system in the unknowns u, χ : [0,+∞) → R
d, where an ODE is coupled with a

(possibly) non monotone relation {
u′(t) + ∇F (u(t)) = χ(t) + f(t),

∇G(χ(t)) = u(t).
(2.8)

It is interesting to note that (2.8) can be interpreted as the gradient flow equation associated with the functional

φ(u) := min
σ∈Rd

(F (u) +G(σ) − 〈u, σ〉) = F (u) −G∗(u), (2.9)

where G∗(u) := supσ∈Rd〈u, σ〉 −G(σ) is the (convex) Legendre-Fenchel-Moreau transform of G.
In order to show this fact, we first observe that the nonlinear relation ∇G(χ) = u is the Euler equation

associated with the minimization problem

given u ∈ R
d, find χ which minimizes σ �→ G(σ) − 〈σ, u〉; (2.10)

since G has a superlinear growth, the set M(u) of the solutions of (2.10) is not empty, and we can rewrite (2.8)
in the more restrictive formulation

u′(t) + ∇F (u(t)) ∈M(u(t)) + f(t), (2.11)

which is the differential inclusion associated with the operator u �→ ∇F (u) −M(u). It is immediate to check
that the Fréchet subdifferential ∂φ(u) is single-valued in its domain and

∂φ(u) = ∇F (u) −M(u) ∀u ∈ D(∂φ).

Suppose in fact that ξ ∈ ∂φ(u): if χ ∈M(u) and v ∈ R
d we have that

〈∇F (u) − χ, v − u〉 ≥ F (v) − F (u) + o(|v − u|) − 〈χ, v − u〉

= F (v) +G(χ) − 〈χ, v〉 −
(
F (u) +G(χ) − 〈χ, u〉

)
+ o(|v − u|)

≥ φ(v) − φ(u) + o(|v − u|) ≥ 〈ξ, v − u〉 + o(|v − u|)

as v → u, and therefore ξ = ∇F (u) − χ. Since the graph of M in R
d × R

d is closed, it is immediate to check
that a weaker form of this relation extends to the limiting subdifferential of φ, i.e.

ξ ∈ ∂�φ(u) ⇒ ξ = ∇F (u) − χ for some χ ∈M(u), (2.12)

so that a solution of the gradient flow (GF) for the functional φ defined by (2.9) also solves (2.11) and (2.8).
Since ∂G∗(u) is the closed convex hull co

(
M(u)

)
of M(u), we have

∂�φ(u) ⊂ ∇F (u) −M(u) ⊂ co(∇F (u) −M(u)) = ∇F (u) − ∂G∗(u), (2.13)
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V V ′

Figure 3. The potential V and its derivative.

g h

Figure 4. The graphs of the (multivalued) maps g = (V ′ + I)−1 and h = I − g.

which shows that ∂�φ(u) contains all the extremal points of the convex set ∇F (u)−∂G∗(u). On the other hand,
since φ is given by the difference of the C1 function F and the convex function G∗, with

χ ∈M(u) ⇒ χ ∈ ∂G∗(u),

it is easy to check that φ satisfies the chain rule condition (chain2): therefore an application of Theorem 3
provides the existence of an energy solution of (2.11) and there is no need to convexifying the evolution operator.

We can check directly in the following particularly simple one-dimensional case that (2.8) corresponds to
a non monotone differential inclusion, whose convexification would introduce spurious solutions which do not
solve the original problem (2.8). For, let F (u) := 1

2u
2, u ∈ R and G(χ) := 1

2
χ2 + V(χ), where V : R → R is the

(piecewise quadratic) double well potential

V(χ) :=

⎧⎪⎨⎪⎩
(χ+ 1)2 χ < − 1

2 ,

−χ2 + 1
2 |χ| ≤ 1

2 ,

(χ− 1)2 χ > 1
2 ,

with derivative V ′(χ) =

⎧⎪⎨⎪⎩
2(χ+ 1) χ < − 1

2 ,

−2χ |χ| < 1
2 ,

2(χ− 1) χ > 1
2

(2.14)

(see Fig. 3). In this setting, (2.8) reads {
u′(t) + u(t) = χ(t) + f(t),
V ′(χ(t)) + χ(t) = u(t),

(2.15)

which is a drastic one-dimensional caricature of the PDE model of Example 4 later on. Notice that the map
χ �→ G′(χ) = V ′(χ)+χ is not monotone. Thus, the inverse g := (V ′ + I)−1 is a multivalued function, and (2.15)
is equivalent to the differential inclusion

u′(t) + u(t) − g(u(t)) � f(t), (2.16)

associated with the non monotone multivalued map u �→ h(u) := u− g(u) (see Fig. 4).
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M h̃

Figure 5. The graphs of M(u) and h̃(u) = u−M(u).

In this case, the functional φ is given by

φ(u) = min
σ∈R

(
1
2
u2 +

1
2
σ2 + V(σ) − σu

)
= min

σ∈R

(
1
2
|u− σ|2 + V(σ)

)
, (2.17)

which has the analytical expression of (1.24) and provides a variational selection M(u) of χ in g(u), given by
the minimization problem

find χ ∈ R which attains the minimum in (2.17), (2.18)

where u is considered as a given parameter.
Therefore, coupling (2.15) with (2.18) yields the differential inclusion

u′(t) + u(t) −M(u(t)) = u′(t) − h̃(u) � f(t), (2.19)

(see Fig. 5), whose solutions also solve the previous (2.16), since the variational principle (2.18) has in fact
selected suitable branches of g and h. Instead, the convexification of the values of h̃ (by adding the vertical
segment [−2/3, 2/3] at u = 0), would destroy this property.

Remark 2.2. Systems like (2.8) arise naturally from the formal limit as ε ↓ 0 of a time relaxation in the second
equation, e.g. εχ′(t) + ∇G(χ(t)) = u(t). In the non monotone case, one should expect that hysteresis occurs
in the limit (see e.g. the discussion of [46], Chap. X, and the approaches proposed in [30, 48]). Here, we are
neglecting these non local effects: our variational selection principle (2.10) always forces χ to jump towards an
absolute minimum of the map v �→ G(v) − 〈u, v〉.

The next examples, arising from some models for phase transitions, exhibit a similar structure in infinite-
dimensional spaces.

2.2. The gradient flow structure of some quasistationary models for phase transitions

Before developing the main applications of our results to quasistationary phase field models, let us first
examine the well-known example of the H−1 formulation of the classical Stefan problem, see [11, 14].

Example 3 (The Stefan problem). We consider the boundary value problem for the evolution PDE⎧⎪⎨⎪⎩
∂tu− ∆β(u) = f in Ω × (0, T ),
β(u) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω,

(2.20)

where Ω is an open bounded and connected subset of R
m, f : Ω × (0, T ) → R, and

β(u) := (u− 1)+ − (u+ 1)−, u ∈ R.
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Figure 6. The potential j and its derivative β

By adopting the usual convention of identifying a real function (x, t) �→ v(x, t) defined in Ω×(0, T ) with the time
dependent function t �→ vt = v(·, t) with values in some function space defined on Ω, (2.20) can be interpreted
as the gradient flow in the space H := H−1(Ω) of the convex functional

φ(u) :=

{∫
Ω j(u(x))dx if u ∈ L2(Ω),

+∞ if u ∈ H−1(Ω) \ L2(Ω),
(2.21)

where j is the primitive of β, i.e.,

j(u) :=
1
2
((|u| − 1)+)2, u ∈ R,

(see Fig. 6). In order to understand the role of the space H−1(Ω) and to highlight the gradient flow structure
of (2.20), we first consider the realization of −∆ with homogeneous Dirichlet boundary conditions as unbounded
operator in L2(Ω) and, by inverting it, we rewrite the Stefan equation as

(−∆)−1∂tu+
δφ

δu
= 0 in Ω × (0, T ),

where δφ
δu = β(u) is the first variation of the integral functional φ. It is then natural to introduce the scalar

product
〈u, v〉 :=

(
(−∆)−1u, v

)
L2(Ω)

=
(
u, (−∆)−1v

)
L2(Ω)

,

with the induced norm |u|2 :=
(
(−∆)−1u, u

)
L2(Ω)

;
(2.22)

it is well-known that we can identify the completion of L2(Ω) w.r.t. this norm with the space H = H−1(Ω),
and the operator −∆ can be extended by continuity to an unbounded operator A : D(A) ⊂ H → H with
D(A) := H1

0 (Ω).
It is useful to rephrase (2.20) by introducing the function

χ := u− β(u);

in the applications, u is the internal energy of a physical system (occupying the region Ω), undergoing a solid-
liquid phase transition in the time interval (0, T ), while χ is an order parameter, yielding the local proportion
of the two phases (here we are normalizing all the relevant physical constants to 1).

By inverting the Laplace operator in this setting, (2.20) becomes

A−1∂tu+ u = χ+A−1f in Ω × (0, T ), (2.23)

χ+ sign−1(χ) � u in Ω × (0, T ), (2.24)
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whose formal structure looks like (2.8); here, the (multivalued) map sign−1 is defined as

sign−1(x) :=

⎧⎪⎨⎪⎩
(−∞, 0] if x = −1,
0 if −1 < x < 1,
[0,+∞) if x = 1,

x ∈ [−1, 1],

and it is the (convex) subdifferential of the indicator function I[−1,1],

I[−1,1](x) :=

{
0 if −1 ≤ x ≤ 1,
+∞ otherwise.

We may easily check that the functional φ (2.21) admits the variational representation

φ(u) := min
σ∈L2(Ω)

F (u, σ), F (u, σ) :=
∫

Ω

(
1
2
|u− σ|2 + I[−1,1](σ)

)
dx. (2.25)

In this case, the map χ �→ χ+ sign−1(χ) is monotone and the minimization problem (2.25) is convex in σ, so
that there is no difference between (2.24) and χ ∈ argminL2(Ω) F (u, ·). From the mathematical point of view,
the interest of the less direct representation (2.23)–(2.24) of (2.20) is that several quasistationary phase field
models are obtained simply by replacing the indicator function I[−1,1] in (2.25) by more complex non convex
functionals, which in some sense force χ to stay near the extreme points −1 and 1 of the interval.

Example 4 (The quasistationary phase field model). An alternative model for solid-liquid transitions is the
quasistationary phase field system:

∂tu− ∆(u − χ) = f in Ω × (0, T ), (2.26)

−ε∆χ+
1
ε
(χ3 − χ) = u− χ in Ω × (0, T ). (2.27)

(2.27) is the Euler-Lagrange equation for the minima of the Landau-Ginzburg free energy potential

Fε(u, χ) :=
∫

Ω

(ε
2
|∇χ|2 +

1
4ε

(χ2 − 1)2 +
1
2
|χ− u|2

)
dx (2.28)

at constant u.
The existence of solutions for the system (2.26)–(2.27), supplemented with the initial and Dirichlet/Neumann

boundary conditions (n denotes the outer unit normal to ∂Ω)

u(x, 0) = u0(x) in Ω; u− χ = 0, ∂nχ = 0 on ∂Ω × (0, T ), (2.29)

was proved in [35] for the space dimensionsm ≤ 3, by means of a compactness method and a unique continuation
result, thus heavily relying on the precise form of the equation (2.27), in particular on the presence of the
Laplacian and of the analytic potential

W (χ) :=
1
4ε
(
χ2 − 1

)2
, W ′(χ) =

1
ε

(
χ3 − χ).

In [43], Schätzle proved an existence result for the initial-boundary value problem obtained by supplement-
ing (2.26)–(2.27) with the initial and homogeneous Neumann conditions

u(x, 0) = u0(x) in Ω, ∂n(u− χ) = ∂nχ = 0 on ∂Ω × (0, T ). (2.30)
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Here the approach of [35] is no more possible and it is replaced by refined spectral analysis arguments, still
based on the specific form of W (the proof involves its analyticity), of the elliptic operator in (2.27), and on the
dimension m ≤ 3.

In analogy with the discussion developed in Example 3 for the Stefan Problem, we will adopt a gradient flow
approach to (2.26)–(2.27), also obtaining an existence result for more general differential problems, both with
Dirichlet (2.29) or Neumann (2.30) boundary conditions in arbitrary space dimension m.

The gradient flow approach . We consider the system

∂tu− div A1∇(u − χ) = f in Ω × (0, T ), (2.31)

−ε div A2∇χ+
1
ε
W ′(χ) = u− χ in Ω × (0, T ), (2.32)

where A1,A2 : Ω → M
m×m are symmetric matrices, with measurable coefficients, satisfying the usual uniform

ellipticity condition
a−1 ≥ A1,2(x)η · η ≥ a > 0 ∀x ∈ Ω, η ∈ R

m, |η| = 1, (2.33)

and W is an arbitrary C1 real function with superlinear growth; extended real valued semiconvex functions
could also be considered (thus allowing convex constraints on χ), simply replacing the equation (2.32) by the
corresponding differential inclusion involving ∂W instead of W ′.

In accordance with the analysis developed in Examples 2 and 3, in the case of Dirichlet boundary condi-
tions (2.29) we will endow the Hilbert space H := H−1(Ω) with the scalar product induced by the differential
operator A1 := − div

(
A1∇ ·

)
as in (2.22), and we will consider the functionals

Fε(u, χ) :=
∫

Ω

(1
2
|u− χ|2 +

ε

2
A2(x)∇χ · ∇χ+

1
ε
W (χ)

)
dx, (2.34)

φε(u) := min
σ∈H1(Ω)

Fε(u, σ), Mε(u) :=
{
χ ∈ H1(Ω) : Fε(u, χ) = φε(u)

}
. (2.35)

We will investigate the gradient flow equation (GF) for the functional φε, with the source term f . The following
result is a particular case of a general existence and convergence result (Th. 5.8 in Sect. 5) for quasistationary
phase field models.

Theorem 2.3. Given u0 ∈ L2(Ω) and f ∈ L2(0, T ;H−1(Ω)), there exist

u ∈ H1(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)), χ ∈ L∞(0, T ;H1(Ω)),

ϑ := u− χ ∈ L2(0, T ;H1
0 (Ω)),

(2.36)

such that the pair (u, χ) fulfills (2.31), coupled with (here χt := χ(·, t), ut := u(·, t))

χt ∈Mε(ut) = argmin
σ∈H1(Ω)

Fε(ut, σ) a.e. in (0, T ), (2.37)

(yielding in particular (2.32)), and the initial and boundary conditions (2.29).
In fact, any generalized Minimizing Movement in H−1(Ω) is an Energy solution of the gradient flow (GF)

generated by φε, u0, f (cf. Th. 3) and solves (2.31), (2.37), (2.29).
Finally, a completely analogous existence result holds in the case of Neumann boundary conditions and f ∈

L2(0, T ;L2(Ω)), by simply replacing H−1(Ω) and H1
0 (Ω) with

(
H1(Ω)

)′ and H1(Ω) in (2.36).

Remark 2.4. [43] adopts a discretization scheme which is different from the Minimizing Movement
one (1.19, 1.20) induced by the functional (2.35) in

(
H1(Ω)

)′. Correspondingly, the solutions χt of [43] are
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only µ-minimizers of (2.37) for an (arbitrarily small) constant µ > 0 and they satisfy the weak Lyapunov-type
condition

φε(us) +
∫ s

0

∫
Ω

|∇ϑ|2 dxdt ≤ φε(u0) +
∫ s

0

∫
Ω

fϑ dxdt, for a.e. s ∈ (0, T ).

Besides (2.37), Theorem 2.3 (cf. (5.46)) shows that every Minimizing Movement solution u is in fact an energy
solution and therefore satisfies the stronger energy identity

φε(us) +
∫ s

0

∫
Ω

|∇ϑ|2 dxdt = φε(u0) +
∫ s

0

∫
Ω

fϑ dxdt, ∀s ∈ [0, T ]. (2.38)

In the particular case f ≡ 0, (2.38) shows that the potential φε is non increasing along the solution u.

Example 5 (the Stefan-Gibbs-Thomson problem). If we formally pass to the limit as ε ↓ 0 in (2.26, 2.37), we
get a system where equation (2.26)

∂tu− ∆(u− χ) = f in Ω × (0, T ), (2.39)

is coupled with the minimum condition for χt = χ(·, t)

χt ∈ argmin
σ

F0(u(t), σ) = M0(u(t)) in (0, T ), (2.40)

for the functional

F0(u, χ) :=
∫

Ω

(1
2
|u− χ|2 + I{−1,1}(χ)

)
dx+ α

∫
Ω

|Dχ|.

Here, α =
∫ 1

−1

√
2εW (ρ) dρ = 2

√
2

3 , I{−1,1} is the indicator function of the non convex set {−1, 1}, and Dχ is
the distributional gradient of χ: it is a Borel vector measure, whose total variation |Dχ| is defined on every
open set A ⊂ Ω by

|Dχ|(A) =
∫
A

|Dχ| := sup
{∫

A

χ div ζ dx : ζ ∈ C1
0 (A; Rm), sup

Ω
|ζ| ≤ 1

}
. (2.41)

F0(u, χ) is the functional obtained by taking the Γ-limit of Fε, for u fixed in L2(Ω) [31, 32] (see also [9] in
the case (2.34) of space-dependent coefficients). Denoting by BV (Ω; {−1, 1}) the subset of all the functions of
bounded variation taking their values in the set {−1, 1}, (2.40) may be also rephrased for every time t ∈ (0, T ) as

χt ∈ BV (Ω; {−1, 1}), and∫
Ω

|Dχt| −
∫

Ω

utχt dx ≤
∫

Ω

|Dσ| −
∫

Ω

utσ dx ∀σ ∈ BV (Ω; {−1, 1}).
(2.42)

At each time t ∈ (0, T ) we can associate with the characteristic function χt the phases E±
t and their common

essential boundary St (see [2], Def. 3.60):

E±
t :=

{
x ∈ Ω : χ(x, t) = ±1

}
, St = ∂∗E+

t = ∂∗E−
t ; (2.43)

The De Giorgi-Federer Theorems (see [2], Ths. 3.59, 3.61), show that St is countably (m− 1)-rectifiable and

1
2
|Dχt| = Hm−1�St, Dχt = νt · |Dχt| = νtDχt = 2νt · Hm−1�St, (2.44)

where the (Borel) vector field νt : St → Sm−1 is the inner measure theoretic normal to E+
t .
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As shown by [35, 43] following the argument of [28], the limit of (2.27) yields the Gibbs-Thomson condition

H = ϑt νt on St

for the mean curvature vector H at the evolving phase interface St: its weak formulation reads [27, 43]

α

∫
Ω

(
div ζ − νTt Dζ νt

)
d|Dχt| =

∫
Ω

div(ϑtζ)χt dx, ϑt := ut − χt,

∀ζ ∈ C2(Ω; Rm), ζ · n = 0 on ∂Ω.
(2.45)

We refer to (2.39, 2.40, 2.45) as the Stefan-Gibbs-Thomson problem; its formulation as a gradient flow was
suggested by A. Visintin and existence of (Lyapunov) solutions has been first proved by S. Luckhaus in the
pioneering paper [26] (see also [27]) and then further investigated in [47], Chap. VIII. The proof is based on
a time discretization technique (whose link with the present Minimizing Movement scheme (1.19, 1.20) will
be discussed in the next Rem. 2.7) and a clever passage to the limit, which relies on careful capacity type
estimates for Sobolev functions defined on Ω; abstract versions of this argument have been further proposed
and investigated in [35, 38, 42]. The convergence of the quasistationary phase field model (2.26, 2.27) to the
Stefan-Gibbs-Thomson problem has been proved in [35, 43].

As in the previous example, we will obtain a solution of the system (2.26, 2.40) supplemented with the
conditions

u(x, 0) = u0(x) in Ω, u− χ = 0 on ∂Ω × (0, T ), (2.46)
by solving the gradient flow equation (GF) in the Hilbert space H := H−1(Ω) for the functional

φ0(u) := inf
σ∈BV (Ω)

F0(u, σ) (2.47)

with domain D(φ0) = L2(Ω) ⊂ H . By adopting this gradient flow approach, we are able to retrieve Luckhaus’s
existence result [26], and we get some insight into the Lyapunov inequality satisfied by u.

Theorem 2.5. Let Ω be a C1 connected open set. For every u0 ∈ L2(Ω) and f ∈ L2(0, T ;H−1(Ω)) the gradient
flow equation (GF) for the functional (2.47) in H := H−1(Ω) has a (Lyapunov, according to Theorem 1)
solution u ∈ H1(0, T ;H−1(Ω)) which solves the Stefan-Gibbs-Thomson problem, i.e., there exists (a measurable
selection) χt = χ(·, t) ∈M0(ut), t ∈ (0, T ), such that

ϑ = u− χ ∈ L2(0, T ;H1
0 (Ω) ∩ L∞(0, T ;L2(Ω)), (2.48)

and the pair (u, χ) solves the initial-boundary value problem (2.39, 2.40, 2.45, 2.46).
Moreover, u and χ fulfill for a.e. s, t ∈ (0, T ), s ≤ t, the Lyapunov inequality∫ t

s

∫
Ω

|∇ϑ(x, r)|2 dxdr+F (ut, χt) ≤ F (us, χs) +
∫ t

s

〈fr, ϑr〉dr. (2.49)

We postpone the proof of this result to Section 5: here we only recall the crucial link with the abstract theory
of the previous section: if u ∈ D(∂�φ0) ⊂ L2(Ω) then the limiting subdifferential ∂�φ(u) contains a unique
element ξ and it satisfies

ξ = −∆ϑ, ϑ = u− χ ∈ H1
0 (Ω), χ ∈M0(u), (2.45) holds. (2.50)

Remark 2.6. As detailed in [26], p. 106, since for m ≤ 3 the Sobolev imbedding theorem yields ut = ϑt +χt ∈
Lp(Ω) for a.e. t ∈ (0, T ) with p = 2m/(m − 2) > m, the minimality condition (2.42) satisfied by χt and the
regularity results for minimal surfaces yield that the interface St can be locally represented as the graph of a
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C1,1/4 function g. Namely, after a change of coordinates at each point x ∈ Ω there exists an open ball Bρ(x)
such that

E−
t ∩Bρ(x) =

{
(x′, xm) ∈ R

m−1 × R : xm > g(x′)
}
∩Bρ(x). (2.51)

In this new reference system, (2.45) becomes (see [2], 7.33, [27], p. 4)

−α div
(

∇g(x′)√
1 + |∇g(x′)|2

)
= θ(x′, g(x′)), (2.52)

which is the original condition of [26], p. 102.

Remark 2.7. According to the Minimizing Movement approach (1.19, 1.20), the solution u of the
Stefan-Gibbs-Thomson problem is approximated by the sequence {Unτ }Nn=0, τ = T/N , whose elements re-
cursively minimize

Φnτ (U) :=
1
2τ

‖U − Un−1
τ ‖2

H−1(Ω) + φ0(U) (2.53)

(for the sake of simplicity, here we consider the case f ≡ 0 and we omit to indicate the explicit dependence
on τ, Un−1

τ , Xn−1
τ in the various functionals). Taking into account (2.47), this problem is equivalent finding a

couple (Unτ , Xn
τ ) which minimizes

Φ̃nτ (U,X) :=
1
2τ

‖U − Un−1
τ ‖2

H−1(Ω) + F0(U,X). (2.54)

The discretization algorithm introduced by Luckhaus in [27] is equivalent to (2.54), but it gives a distinguished
role to the variable X instead of U . More precisely, by introducing the new variable Θ := U−X and writing Φ̃nτ
in terms of the couple (Θ, X) as

Ψn
τ (Θ, X) :=

‖Θ − Θn−1
τ +X −Xn−1

τ ‖2
H−1(Ω)

2τ
+ α

∫
Ω

|DX | +
∫

Ω

(1
2
|Θ|2 + I{−1,1}(X)

)
dx,

the minimum problem for Ψn
τ can be split into two iterated minima:

min
(Θ,X)

Ψn
τ (Θ, X) = min

X
ψnτ (X), where ψnτ (X) := min

Θ
Ψn
τ (Θ, X).

It is easy to check that for a fixed X the minimum ψnτ (X) of Ψn
τ (X, ·) is attained at a unique Θ = Θ(X) ∈ H1

0 (Ω),
which is determined by the Euler equation

Θ − τ∆Θ = Θn−1
τ +Xn−1

τ −X, Θ(X) = Kτ (Θn−1
τ +Xn−1

τ −X), (2.55)

where Kτ := (I − τ∆)−1. We thus find

‖Θ − Θn−1
τ +X −Xn−1

τ ‖2
H−1(Ω)

2τ
+

1
2

∫
Ω

|Θ|2 dx =
1
2

(
τ‖∆Θ‖2

H−1(Ω) + ‖Θ‖2
L2(Ω)

)
=

1
2

(
τ‖Θ‖2

H1
0 (Ω) + ‖Θ‖2

L2(Ω)

)
=

1
2H

−1(Ω)

〈
Θ − τ∆Θ,Θ

〉
H1

0 (Ω)

=
1
2

∫
Ω

(
Θn−1
τ +Xn−1

τ −X
)
Kτ

(
Θn−1
τ +Xn−1

τ −X
)
dx

=
1
2

∫
Ω

(
X −Xn−1

τ

)
Kτ

(
X −Xn−1

τ

)
dx−

∫
Ω

XKτ

(
Θn−1
τ

)
dx+ Cn−1

τ
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where Cn−1
τ = C(Θn−1

τ , Xn−1
τ ) is independent of X . It follows that

ψnτ (X) = α

∫
Ω

|Dχ| +
∫

Ω

I{−1,1}(X)dx+
1
2

∫
Ω

(
X −Xn−1

τ

)
Kτ

(
X −Xn−1

τ

)
dx−

∫
Ω

XKτ

(
Θn−1
τ

)
dx+ Cn−1

τ

and the algorithm

given (Θn−1
τ , Xn−1

τ ) find Xn
τ which minimizes ψnτ , Θn

τ := Kτ (Xn−1
τ + Θn−1

τ −Xn
τ ),

coincides with the algorithm (2h) introduced, in [27], p. 12.

3. Hilbert space valued young measures and the chain rule

In this section we mainly discuss two technical tools, which we will extensively use in the sequel.
The first one is concerned with parametrized measures with values in a Hilbert space: we shall deduce from

this well-established theory a version of the fundamental theorem of Young measure theory (see [5], Th. 1, and
also [8]), in the context of weak topologies.

Then, by means of a measurable selection result, we will study the relations between parametrized measures
and the Chain Rule conditions we have presented in the Introduction.

3.1. Parametrized young measures

First of all, we fix some notation and we recall the notion of (time dependent) parametrized measures.

Notation. Let E be a separable metric space: we denote by B(E) its Borel σ-algebra, while L is the σ-algebra
of the Lebesgue measurable subsets of (0, T ), and L⊗B(E) is the product σ-algebra on (0, T )×E. A L⊗B(E)-
measurable function h : (0, T ) × E → (−∞,+∞] is a normal integrand if

v �→ ht(v) := h(t, v) is l.s.c. on E for a.e. t ∈ (0, T ). (3.1)

When E = H is a Hilbert space, we say that a L⊗B(H )-measurable functional h : (0, T )×H → (−∞,+∞]
is a weakly normal integrand if

v �→ ht(v) = h(t, v) is sequentially weakly l.s.c. for a.e. t ∈ (0, T ). (3.2)

Definition 3.1 ((Time dependent) parametrized measures). A parametrized measure in the separable metric
space E is a family ν := {νt}t∈(0,T ) of Borel probability measures on E such that

t ∈ (0, T ) �→ νt(B) is L-measurable ∀B ∈ B(E). (3.3)

We denote by Y (0, T ;E) the set of all parametrized measures.

A version of Fubini’s theorem [21], p. 20-II, states that for every parametrized measure ν = {νt}t∈(0,T ), there
exists a unique measure ν on L ⊗ B(E) defined by

ν(I ×A) =
∫
I

νt(A) dt ∀I ∈ L, A ∈ B(E).

Moreover, for every L ⊗ B(E)-measurable function h : (0, T ) × E → [0,+∞], the function

t ∈ (0, T ) �→
∫
E

h(t, ξ) dνt(ξ) is L-measurable,
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and the Fubini’s integral representation formula holds:∫
(0,T )×E

h(t, ξ) dν(t, ξ) =
∫ T

0

(∫
E

h(t, ξ)dνt(ξ)
)

dt. (3.4)

Note that (3.4) holds even for ν-integrable real valued functions.
If ν is concentrated on the graph of a measurable function u : (0, T ) → E, then νt = δu(t) for a.e. t ∈ (0, T ),

where δu(t) denotes the Dirac’s measure carried by {u(t)}. In this case, by (3.4)

∫
(0,T )×E

h(t, ξ) dν(t, ξ) =
∫ T

0

h(t, u(t)) dt

for every L ⊗ B(E)-measurable and nonnegative function h.
The following theorem is a direct consequence of [5], Theorem 1 (see also [6], Th. 2.2, [7], Th. 4.2, [45], Th. 16).

Theorem 3.2 (The fundamental theorem for weak topologies). Let {vn}n∈N be a bounded sequence in
Lp(0, T ; H ), for some p > 1. Then there exists a subsequence k �→ vnk

and a parametrized measure ν =
{νt}t∈(0,T ) ∈ Y(0, T ; H ) such that for a.e. t ∈ (0, T )

lim sup
k↑+∞

|vnk
(t)| < +∞, νt is concentrated on the set L(t) :=

⋂∞
p=1

{
vnk

(t) : k ≥ p
}w

(3.5)

of the weak limit points of {vnk
(t)}, and

lim inf
k→∞

∫ T

0

h(t, vnk
(t)) dt ≥

∫ T

0

(∫
H

h(t, ξ) dνt(ξ)
)

dt (3.6)

for every weakly normal integrand h such that h−(·, vnk
(·)) is uniformly integrable. In particular,∫ T

0

(∫
H

|ξ|p dνt(ξ)
)

dt ≤ lim inf
k→∞

∫ T

0

|vnk
(t)|p dt < +∞, (3.7)

and, setting

v(t) :=
∫

H

ξ dνt(ξ), we have vnk
⇀ v in Lp(0, T ; H ). (3.8)

Finally, if νt = δv(t) for a.e. t ∈ (0, T ), then

〈vnk
, w〉 → 〈v, w〉 in L1(0, T ) ∀w ∈ Lq(0, T ; H ),

1
q

+
1
p

= 1. (3.9)

and, up to an extraction of a further subsequence independent of t (still denoted by vnk
)

vnk
(t) ⇀ v(t) for a.e. t ∈ (0, T ). (3.10)

Proof. We cannot apply directly [5], Theorem 1, since H , endowed with its weak topology, is not a metrizable
space: we circumvent this difficulty by introducing an even weaker metric on H , which induces the usual weak
convergence on every bounded set, and by considering the new sequence vn(t) := (vn(t), |vn(t)|), with values in
the metric space

E :=
{

v = (v, w) ∈ H × R : |v| ≤ w
}
⊂ H × R. (3.11)
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This construction is well-known (see e.g. [13]), and even easier in Hilbert spaces: indeed, we fix an orthonormal
basis {em}m∈N in H , and we define

|||v|||2 :=
∞∑
m=0

2−m|〈em, v〉|2 ∀v ∈ H . (3.12)

Then, we consider the following distance on E

d(v1,v2) := |||v1 − v2||| + |w1 − w2|, if vi = (vi, wi) ∈ E, i = 1, 2, (3.13)

observing that

vn = (vn, wn) ∈ E, vn → v = (v, w) in E ⇔
{
vn ⇀ v weakly in H ,

wn → w in R.
(3.14)

It is immediate to check that E is separable and complete with the distance (3.13); moreover, bounded weakly
closed subsets of E are compact with respect to this new topology. In particular, any intersection of closed balls
of H × R with E is a Borel subset of E. Therefore, for any Borel subset B of H × R we have

B ∈ B(H × R) ⇒ B ∩E ∈ B(E);

thus, any Borel (probability) measure µ on E can be trivially extended to a Borel (probability) measure on
H × R.

We can now apply Balder’s theorem ([5], Th. 1) to the sequence vn := (vn, |vn|) in E, and we thus find a
subsequence vnk

and a parametrized measure µ = {µt}t∈(0,T ) ∈ Y(0, T ;E) such that for a.e. t ∈ (0, T )

µt is concentrated on the set L(t) :=
⋂∞
p=1

{
vnk

(t) : k ≥ p
}E
, vnk

(t) is bounded (3.15)

(i.e., L(t) is the set of the E-limit points of {vnk
(t)}; the boundedness of vnk

(t) follows, e.g., by [42], Th. 2),
and

lim inf
k→∞

∫ T

0

g(t, vnk
(t), |vnk

(t)|) dt ≥
∫ T

0

(∫
E

g(t, v, w) dµt(v, w)
)

dt (3.16)

for every E-normal integrand g such that g−(·, vnk
(·), |vnk

(·)|) is uniformly integrable.
Setting

νt(A) := µt
(
E ∩ (A× [0,+∞))

)
∀A ∈ B(H ), (3.17)

we obtain a parametrized measure ν := {νt}t∈(0,T ) which satisfies (3.5) and (3.6). Indeed, by (3.15) the
sequences {vnk

(t)}k∈N are bounded in H for a.e. t ∈ (0, T ), and we note that for a.e. t ∈ (0, T )

L(t) ⊂ L(t) × [0,+∞) and, from (3.15), µt(E \ L(t)) = 0.

Then, taking into account (3.17), we conclude that

νt(H \ L(t)) = µt(E \ (L(t) × [0,+∞))) ≤ µt(E \ L(t)) = 0,

which yields (3.5). In the end, (3.6) follows from (3.16) simply by choosing g(t, v, w) := h(t, v) and observing
that ∫

E

h(t, v) dµt(v, w) =
∫

H

h(t, v) dνt(v),

whereas we deduce (3.8) from (3.7) by choosing the family of weakly normal integrands

h(t, v) := 〈w(t), v〉 with w ∈ Lq(0, T ; H ).
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Finally (3.9) follows by the same argument, by putting

h(t, v) := |〈v − v(t), w(t)〉| with w ∈ Lq(0, T ; H ).

(3.10) ensues from the boundedness of vnk
(t) (3.5) and (3.16), by choosing g(t, v, ρ) := −|||v − v(t)|||. �

3.2. Young measures and the Chain Rule

We have stated the Chain Rule conditions (chain1,2) in a sort of “global” formulation: roughly speaking,
whenever we know that a curve v ∈ H1(0, T ; H ) admits a global selection ξ ∈ L2(0, T ; H ) in the limiting
subdifferential ∂�φ ◦ v, then we are able to evaluate the time derivative of φ ◦ v in terms of v′ and of that
particular selection ξ outside a negligible set N ⊂ (0, T ), which in principle depends on ξ.

We have adopted this point of view, since these kinds of conditions are easier to check in several concrete
cases (we will see an important example in Prop. 5.7 later on); on the other hand, it would often be useful to
know if the following two stronger properties, valid e.g. in the convex case, hold too:

(1) the chain rule holds outside a negligible set N which does not depend on the particular selection ξ;
(2) if t ∈ (0, T )\N , we can choose an arbitrary element of ∂�φ(v(t)) in order to evaluate the time derivative

of φ ◦ v.
We are going to show now that the Chain Rule conditions (chain1,2) imply the two properties above, which
are also suitable to deal with Young measures.

Before stating this result, we recall that aff A (resp. affA) denotes the affine hull (resp. its closure) of a subset
A ⊂ H (1.8), and we set |∂◦� φ(v)| := infξ∈∂�φ(v) |ξ| (1.9), with the convention inf ∅ = +∞.

We will see in Lemma 3.4 below that if v ∈ C0(0, T ; H ) with v(t) ∈ D(∂�φ) for a.e. t ∈ (0, T ), then the map
t �→ |∂◦� φ(v(t))| is measurable and

∫ T

0

|∂◦� φ(v(t))|2 dt < +∞ ⇔
{

∃ξ ∈ L2(0, T ; H ) :

ξ(t) ∈ ∂�φ(v(t)) for a.e. t ∈ (0, T ).
(3.18)

Theorem 3.3. Let us suppose that φ satisfies the Chain Rule condition (chain1), let v ∈ H1(0, T ; H ) be such
that φ ◦ v is a.e. equal to a function ϕ of bounded variation and v(t) ∈ D(∂�φ) for a.e. t ∈ (0, T ).

(1) If ∫ T

0

|∂◦� φ(v(t))|2 dt < +∞, (3.19)

then
ϕ′(t) = 〈ξ, v′(t)〉 ∀ξ ∈ aff

(
∂�φ(v(t))

)
for a.e. t ∈ (0, T ). (3.20)

(2) If µ = {µt}t∈(0,T ) is a Young measure in H satisfying

∫ T

0

∫
H

|ξ|2 dµt(ξ) dt < +∞, µt(H \ ∂�φ(v(t))) = 0 for a.e. t ∈ (0, T ), (3.21)

then

ϕ′(t) =
∫

H

〈ξ, v′(t)〉dµt(ξ) for a.e. t ∈ (0, T ). (3.22)

Proof. (1). The next lemma shows that we can find a sequence (ζn)n∈N ⊂ L2(0, T ; H ) and a Borel set D ⊂ (0, T )
with full measure, i.e.

∣∣(0, T ) \ D
∣∣ = 0, such that

{ζn(t) : n ∈ N} ⊂ ∂�φ(v(t)) ⊂ {ζn(t) : n ∈ N} ∀t ∈ D. (3.23)
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Applying the Chain Rule (chain1) to each map ζn, we can find negligible sets Nn such that

ϕ′(t) = 〈ζn(t), v′(t)〉 ∀t ∈ (0, T ) \ Nn.

Therefore, setting D0 := D \
⋃
Nn, we have

ϕ′(t) = 〈ζn(t), v′(t)〉 ∀n ∈ N, ∀t ∈ D0,

and this relation extends to aff
{
ζn(t) : n ∈ N

}
, which coincides with aff

(
∂�φ(v(t))

)
.

(2). Condition (3.21) yields that ∂�φ(v(t)) 	= ∅ for a.e. t ∈ (0, T ) and (3.19) is satisfied, since

|∂◦� φ(v(t))|2 ≤
∫

H

|ξ|2 dµt(ξ) for a.e. t ∈ (0, T ).

Then, by the previous claim, (3.20) holds: since µt is a.e. concentrated on ∂�φ(v(t)), integrating (3.20) in H
with respect to µt yields (3.22). �

We conclude this section with the following measurable selection result, which is the technical crucial point
of the proof of Theorem 3.3.

Lemma 3.4. Let v : (0, T ) → H be a Borel map and D ⊂ (0, T ) be a Borel set such that

(0, T ) \ D is negligible, ∂�φ(v(t)) 	= ∅ for t ∈ D.

Then, there exists a sequence of (strongly) measurable maps ζn : (0, T ) → H such that

{ζn(t) : n ∈ N} ⊂ ∂�φ(v(t)) ⊂ {ζn(t) : n ∈ N} for t ∈ D. (3.24)

In particular, the map t �→ |∂◦φ(v(t))| = infn∈N |ζn(t)| is measurable; if (3.19) holds, too, then we can choose
the family {ζn}n∈N so that ζn ∈ L2(0, T ; H ) for every n ∈ N.

Proof. On behalf of [16], Theorem III.22, (3.24) follows once we prove that the graph of the multivalued function
t ∈ D �→ ∂�φ(v(t)), i.e., the set

G := {(t, ξ) ∈ D × H : ξ ∈ ∂�φ(v(t))},
is a Borel subset of D × H .

To check this, it suffices to note that the set

G := graph(∂�φ) =
{
(v, ξ) ∈ H × H : ξ ∈ ∂�φ(v)

}
admits the representation G =

⋃
m∈N

Gm, where Gm is the set of all (v, ξ) ∈ H × H satisfying

∃ξn ∈ ∂φ(vn) s.t. vn → v, ξn ⇀ ξ, sup
n

{
φ(vn), |ξn|

}
≤ m.

In fact, G is a Borel subset of H × H since Gm is a closed subset of H × H for every m ∈ N: indeed, let
(vk, ξk) ∈ Gm and (v, ξ) ∈ H such that

lim
k↑+∞

(
|vk − v| + |ξk − ξ|

)
= 0.

Recalling (3.12) and (3.14), we thus find points ξkn ∈ ∂φ(vkn), n ∈ N, such that

εkn := |vkn − vk| + |||ξkn − ξk||| → 0 as n ↑ +∞, sup
n,k

{
φ(vkn), |ξkn|

}
≤ m.
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Choosing the integer n = nk such that εknk
= k−1, we get vknk

→ v, ξknk
⇀ ξ, since the H -norms of ξkn are

uniformly bounded.
Finally, G may be represented as

G = {(t, ξ) ∈ D × H : (v(t), ξ) ∈ G},

and it is a Borel set, too, being v Borel on (0, T ) and H separable.
In order to prove the second part of the lemma, let {ζn}n∈N be a family of measurable maps satisfying (3.24),

and let us introduce the measurable sets which are recursively defined by

A0 := ∅, Ak :=
{
t ∈ D : |ζk(t)| < |∂◦� φ(v(t))| + 1

}
\
k−1⋃
j=0

Aj .

By construction, the family {Ak}k∈N is disjoint,
⋃
k∈N

Ak = D, and |ζk(t)| ≤ |∂◦� φ(v(t))| + 1 on Ak. The map

ζ(t) :=
+∞∑
k=1

ζk(t)χAk
(t), (3.25)

is a measurable selection of ∂�φ(v(t)) and belongs to L2(0, T ; H ) since |ζ(t)| ≤ |∂◦� φ(v(t))| + 1 for every t ∈ D.
Finally, we use ζ to construct a new countable family of functions

ζn,k(t) :=

{
ζn(t) if |ζn(t)| ≤ k,

ζ(t) otherwise,
(3.26)

which belong to L2(0, T ; H ), and satisfy

ζn,k(t) ∈ ∂�φ(v(t)), {ζn(t) : n ∈ N} ⊂ {ζn,k(t) : n, k ∈ N} if t ∈ D. �

4. Proof of the abstract results

In this section, we collect the proof of the main abstract theorems we have stated in the Introduction.
We split the presentation in four steps:

(1) in the first preliminary paragraph, we study in some detail the “stationary” estimates which concern
each single step of the minimization scheme (1.20): here, we adapt to the presence of the discrete source
term Fnτ some well-known estimates, which are related to the celebrated Moreau-Yosida approximation
of φ. The crucial lemma 4.2 will provide the basic discrete energy estimate for the so-called De Giorgi’s
variational interpolant of the discrete values Unτ .

(2) In the second step, we will introduce this new kind of interpolating families, and we will briefly derive
the discrete equations satisfied by the approximate solutions.

(3) The third step is devoted to the basic a priori estimates, which yield enough compactness to extract
a limit curve u ∈ GMM(Φ;u0, f) from the family of the discrete solutions; Proposition 4.7 provides a
fine description, in terms of Young measures, of the asymptotic inequalities satisfied by this limit.

(4) Finally, in the fourth step we show that this limit curve is in fact a solution to (GF) if ∂�φ satisfies the
convexity condition (conv) or one of the Chain Rule properties (chain1,2).

The last paragraph discusses the validity of the Chain Rule for dominated concave perturbations and contains
the proof of Theorem 4.
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Throughout this section, we will always assume φ to fulfill (comp), which in particular ensures that there
exists some positive constant S such that

φ(v) +
1

2τ∗
|v|2 ≥ −S ∀v ∈ H . (4.1)

In particular, since |w − v|2 ≥ 1
2 |w|2 − |v|2, we get

|w − v|2
τ

+ φ(w) ≥ −S − |v|2
τ∗

∀τ ≤ τ∗, ∀v, w ∈ H . (4.2)

4.1. Estimates for the Moreau-Yosida approximation

Here we collect some preliminary results on the minimization problem (1.20): in particular, we introduce the
linearly perturbed functionals

φ(v; g) := φ(v) − 〈g, v〉 ∀v, g ∈ H ,

their Moreau-Yosida approximation⎧⎪⎨⎪⎩Φ(σ, g, v;w) :=
|w − v|2

2σ
+ φ(w; g),

φσ(v; g) := inf
w∈H

Φ(σ, g, v;w) v, g ∈ H , σ > 0,
(4.3)

and the set Jσ(v; g) where the infimum in (4.3) is attained, i.e.,

Jσ(v; g) := argmin
w∈H

Φ(σ, g, v;w), v, g ∈ H . (4.4)

Let us point out that Jσ(v; g) is non empty for every σ ∈ (0, τ∗). Denoting by vσ the generic element of Jσ(v; g),
we also set

d+
σ (v; g) := sup

vσ∈Jσ(v;g)

|vσ − v|, d−σ (v; g) := inf
vσ∈Jσ(v;g)

|vσ − v|. (4.5)

Let us collect some basic properties of φσ.

Lemma 4.1. For every v, g ∈ H and for every 0 < σ1 < σ2 there holds

φσ2(v; g) ≤ φσ1 (v; g) ≤ φ(v; g), |vσ1 − v| ≤ |vσ2 − v|,
d+
σ1

(v; g) ≤ d−σ2
(v; g) ≤ d+

σ2
(v; g).

(4.6)

In particular, for every v, g ∈ H there exists an (at most) countable set Nv,g ⊂ (0, τ∗) such that

d+
σ (v; g) = d−σ (v; g) ∀σ ∈ (0, τ∗) \ Nv,g. (4.7)

Finally, for every v ∈ D(φ) we have

lim
σ↓0

d+
σ (v; g) = 0, lim

σ↓0
φσ(v; g) = lim

σ↓0
inf

vσ∈Jσ(v;g)
φ(vσ) = φ(v; g),

g ∈ ∂φ(v) ⇒ lim
σ↓0

d+
σ (v; g)
σ

= 0.
(4.8)
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Proof. It is straightforward to check the first chain of inequalities in (4.6), yielding that the map σ �→ φσ(v; g)
is non-increasing. As for the second inequality, we notice that

1
2σ1

|vσ1 − v|2 + φ(vσ1 ) − 〈g, vσ1〉 ≤
1

2σ1
|vσ2 − v|2 + φ(vσ2 ) − 〈g, vσ2〉

=
(

1
2σ1

− 1
2σ2

)
|vσ2 − v|2 +

1
2σ2

|vσ2 − v|2 + φ(vσ2 ) − 〈g, vσ2〉

≤
(

1
2σ1

− 1
2σ2

)
|vσ2 − v|2 +

1
2σ2

|vσ1 − v|2 + φ(vσ1 ) − 〈g, vσ1〉,

whence (
1

2σ1
− 1

2σ2

)
|vσ1 − v|2 ≤

(
1

2σ1
− 1

2σ2

)
|vσ2 − v|2,

and the third chain of inequalities in (4.6) follows. Therefore, for every v, g ∈ H the functions σ �→ d+
σ (v; g),

v �→ d−σ (v; g) are non decreasing. Let Nv,g ⊂ (0, τ∗) be the (at most countable) set of the discontinuity points of
σ �→ d±σ (v; g): then, for every σ ∈ (0, τ∗) \ Nv,g we have by (4.6) and continuity (here we omit the dependence
on g)

lim inf
s↑σ

d−s (v) ≤ lim sup
s↑σ

d+
s (v) ≤ d−σ (v) ≤ d+

σ (v) ≤ lim inf
t↓σ

d−t (v) ≤ lim sup
t↓σ

d+
t (v),

d−σ (v) = lim
s↑σ

d−s (v) = lim
t↓σ

d−t (v), d+
σ (v) = lim

s↑σ
d+
s (v) = lim

t↓σ
d+
t (v),

(4.9)

whence (4.7).
As for (4.8), recalling (4.2) let us preliminarily note that for every w ∈ H and σ < τ∗/2

φ(w) +
|w − v|2

2σ
= φ(w) +

τ∗ − 2σ
2σ(τ∗ + 2σ)

|w − v|2 +
2

τ∗ + 2σ
|w − v|2 ≥ τ∗ − 2σ

4στ∗
|w − v|2 − S − τ−1

∗ |v|2.

In particular, choosing w = vσ ∈ Jσ(v; g) we obtain

τ∗ − 2σ
4τ∗

|vσ − v|2
σ

≤ |vσ − v|2
2σ

+ φ(vσ) +
|v|2
τ∗

+ S. (4.10)

On the other hand, the minimization scheme defining φσ yields

|vσ − v|2
2σ

+ φ(vσ) ≤ φ(v) − 〈g, v − vσ〉 ≤ φ(v) + 2
στ∗

τ∗ − 2σ
|g|2 +

τ∗ − 2σ
8στ∗

|vσ − v|2. (4.11)

Combining (4.10) and (4.11), we infer the existence of a constant C depending only on S and τ∗ such that

|vσ − v|2 ≤ 8σ
τ∗

τ∗ − 2σ

(
S + τ−1

∗ |v|2 + φ(v) + 2
στ∗
τ∗ − σ

|g|2
)

≤ Cσ(1 + |v|2 + φ(v) + σ|g|2), (4.12)

supposing that, e.g., τ∗/(τ∗−2σ) < 2. Hence, since vσ is arbitrary in Jσ(v; g), we have proved the first assertion
in (4.8).

To check the second one, it suffices to remark that

φ(v; g) ≥ lim sup
σ↓0

φσ(v; g) ≥ lim inf
σ↓0

φσ(v; g) ≥ lim inf
σ↓0

inf
vσ∈Jσ(v;g)

φ(vσ ; g) ≥ φ(v; g),

where we have used (4.6) and the lower semicontinuity of the functional v �→ φ(v; g).
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Finally, the last limit of (4.8) follows from the first inequality of (4.11), since by (1.1)

|vσ − v|2
2σ

≤ φ(v) − φ(vσ) − 〈g, v − vσ〉 ≤ |vσ − v| · o(1) as σ → 0. �

We point out that (4.6) yields that for every 0 < σ1 < σ2 < τ∗ the maps σ �→ σ−1d±σ have finite pointwise
variation on (σ1, σ2).

The next lemma, though simple, contains the crucial estimate for the De Giorgi variational interpolants we
will introduce in the next paragraph (see e.g. [3], Lem. 4.1.2, Th. 4.1.4, and [1], Lem. 2.5).

Lemma 4.2. Under the present assumptions, we have that for every v ∈ D(φ) and g ∈ H the map σ �→ φσ(v; g)
is locally Lipschitz on (0, τ∗) and

d
dσ
φσ(v; g) = − (d+

σ (v; g))2

2σ2
= − (d−σ (v; g))2

2σ2
∀σ ∈ (0, τ∗) \ Nv,g, (4.13)

(Nv,g being as in (4.7)).
In particular, we have

|vσ0 − v|2
2σ0

+
1
2

∫ σ0

0

(d±σ (v; g))2

σ2
dσ = φ(v) − φ(vσ0 ) − 〈g, v − vσ0 〉 (4.14)

for every 0 < σ0 < τ∗ and vσ0 ∈ Jσ0(v; g).

Proof. A simple computation yields

φσ1(v; g) − φσ2 (v; g) ≤ φ(vσ2 ; g) +
|vσ2 − v|2

2σ1
− φ(vσ2 ; g) −

|vσ2 − v|2
2σ2

=
(σ2 − σ1)|vσ2 − v|2

2σ1σ2
(4.15)

for every σ1, σ2 ∈ (0, τ∗) and vσi ∈ Jσi(v; g), i = 1, 2. Changing sign to the inequality and interchanging σ1

and σ2, we obtain

φσ1 (v; g) − φσ2 (v; g) ≥
(σ2 − σ1)|vσ1 − v|2

2σ1σ2
·

Then, since the real map σ �→ φσ(v; g) is non increasing, we deduce

0 ≤
(d+
σ1

(v; g))2

2σ1σ2
≤ φσ1 (v; g) − φσ2(v; g)

σ2 − σ1
≤

(d−σ2
(v; g))2

2σ1σ2
∀ 0 < σ1 < σ2, (4.16)

so that σ �→ φσ(v; g) is locally Lipschitz on (0, τ∗). Passing to the limit in (4.16) as σ1 ↑ σ and σ2 ↓ σ and
recalling (4.9), we conclude that (4.13) holds at every σ ∈ (0, τ∗) \ Nv,g.

Integrating (4.13) on (0, σ0) and using (4.8), we deduce that

|vσ0 − v|2
2σ0

+ φ(vσ0 ; g) − φ(v; g) = φσ0(v; g) − lim
σ↓0

φσ(v; g) =
∫ σ0

0

d
dσ
φσ(v; g) dσ = −

∫ σ0

0

(d±σ (v; g))2

2σ2
dσ,

i.e., (4.14). �

4.2. Discrete equations and variational interpolants

Let us first briefly recall the approximation algorithm for (GF) we sketched in Section 1 (cf. (1.19)–(1.20)).
At each time step τ > 0 there corresponds a partition of the interval (0, T )

Pτ := {t0 = 0 < t1 < · · · < tn < · · · < tN−1 < T ≤ tN}, tn := nτ, N ∈ N.
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For f ∈ L2(0, T ; H ) (which we trivially extend to 0 outside the time interval (0, T )), we denote by Fτ the
(left-continuous) piecewise constant interpolant taking the value Fnτ on (tn−1, tn]:

Fτ (t) := Fnτ =
1
τ

∫ tn

tn−1

f(s) ds for t ∈ (tn−1, tn], n = 1, . . . , N. (4.17)

Note that

τ |Fτ (t)|2 ≤ ‖f‖2
L2(tn−1,tn;H ) ∀t ∈ (tn−1, tn], (4.18)

‖Fτ‖2
L2(tm,tn;H ) ≤ ‖f‖2

L2(tm,tn;H ) ∀1 ≤ m < n ≤ N. (4.19)

Fτ → f as τ ↓ 0 strongly in L2(0, T ; H ). (4.20)

We consider an approximate solution {Unτ }Nn=0 of the iterative scheme (1.20), which, taking into account (1.19)
and the notation (4.4), may also be rephrased as{

U0
τ := u0,

Unτ ∈ Jτ (Un−1
τ ;Fnτ ) = argminV ∈H Φ(τ, Fnτ , Un−1

τ ;V ),
(4.21)

for n = 1, . . . , N. For τ < τ∗ (comp) guarantees that this minimization scheme always admits a solution.
We have already denoted by Uτ the piecewise constant interpolant of the values {Unτ }nn=0, and by Uτ the
corresponding piecewise linear interpolant, defined by

Uτ (t) := Unτ , Uτ(t) :=
tn − t

τ
Un−1
τ +

t− tn−1

τ
Unτ , t ∈ (tn−1, tn]. (4.22)

We also introduce the following variational interpolant, due to E. De Giorgi, for which the local energy inequal-
ity (4.14) plays a key role.

Definition 4.3 (De Giorgi variational interpolants). We denote by Ũτ any interpolant of the discrete values
{Unτ }Nn=0 given by ⎧⎨⎩

Ũτ (0) = u0, and, for t = tn−1 + σ ∈ (tn−1, tn],

Ũτ (t) ∈ Jσ(Un−1
τ ;Fnτ ) = argminV ∈H Φ(σ, Fnτ , U

n−1
τ ;V ),

(4.23)

such that the map t �→ Ũτ (t) is Lebesgue measurable in (0, T ).

Remark 4.4 (measurability of Ũτ ). Since the map σ �→ Jσ(Un−1
τ ;Fnτ ) is compact valued and upper semicon-

tinuous, the existence of a measurable selection Ũτ (tn−1 + σ) ∈ Jσ(Un−1
τ ;Fnτ ), σ ∈ (tn−1, tn], is ensured by [16],

Corollary III.3, Theorem III.6.

Note that when t = tn, the minimization scheme in (4.23) coincides with the one in (4.21), so that we can
always assume that

Ũτ (tn) = Uτ (tn) = Uτ (tn) = Unτ , for every n = 1, . . . , N. (4.24)

Further, (4.23) and the standard calculus properties (1.21) of the Fréchet subdifferential yield the discrete
inclusion

Ũτ (t) − Un−1
τ

t− tn−1
+ ∂φ(Ũτ (t)) � Fnτ ∀ t ∈ (tn−1, tn], n = 1, . . . , N, (4.25)

which we also write as
Θ̃τ (t) + ∂φ(Ũτ (t)) � Fτ (t) ∀t ∈ (0, T ), (4.26)
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where

Θ̃τ (t) :=
Ũτ (t) − Un−1

τ

t− tn−1
for t ∈ (tn−1, tn]. (4.27)

Note that (4.25) reduces to
Unτ − Un−1

τ

τ
+ ∂φ(Unτ ) � Fnτ , (4.28)

at the nodes tn of the partition, which can be equivalently rephrased as

U ′
τ (t) + ∂φ(Uτ (t)) � Fτ (t) for a.e. t ∈ (0, T ). (4.29)

Finally, recalling (4.5), we introduce the real function Gτ by

Gτ (t) :=
d+
σ (Un−1

τ ;Fnτ )
σ

, for t = tn−1 + σ ∈ (tn−1, tn].

Note that

Gτ (t) ≥
|Ũτ (t) − Un−1

τ |
t− tn−1

= |Θ̃τ (t)| for t = tn−1 + σ ∈ (tn−1, tn]. (4.30)

4.3. A priori estimates and compactness of the approximate solutions

Preliminarily, we recall the following well-known Discrete Gronwall lemma:

Lemma 4.5. Let B, b, and κ be positive constants fulfilling 1−b ≥ 1
κ > 0 and let {an} ⊂ [0,+∞) be a sequence

satisfying

an ≤ B + b

n∑
k=1

ak ∀n ∈ N.

Then, {an} can be bounded by
an ≤ κBeκ bn ∀n ∈ N. (4.31)

Proof. (4.31) can be easily checked by induction: for n = 1 we have

a1 ≤ B + ba1 ⇒ a1 ≤ κB ≤ κBeκb;

assuming (4.31) for all n < n̄, we get

κ−1an̄ ≤ (1 − b)an̄ ≤ B + b

n̄−1∑
n=1

an ≤ B + bκB

n̄−1∑
n=1

eκbn = B + bκB
eκbn̄ − 1
eκb − 1

≤ B + bκB
eκbn̄ − 1
κb

≤ B +Beκbn̄ − B ≤ Beκbn̄ �

Proposition 4.6 (A priori estimates). For 0 < τ < τ∗ let Uτ , Uτ , and Ũτ be the families of interpolant defined
by (4.22) and (4.23), respectively, in terms of the discrete solutions of the minimization scheme (4.21). Then,
the discrete energy equality

1
2

∫ t

s

(
|U ′
τ (σ)|2 + |Gτ (σ)|2

)
dσ + φ(Uτ (t)) = φ(Uτ (s)) +

∫ t

s

〈Fτ (σ), U ′
τ (σ)〉dσ (4.32)

holds for every pair of nodes s < t ∈ Pτ .
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Moreover, there exists a positive constant C, only depending on the data u0, f, and on the parameters τ∗, S,
such that

‖Uτ‖L∞(0,T ;H ) + ‖Uτ‖L∞(0,T ;H ) + ‖Ũτ‖L∞(0,T ;H ) ≤ C, (4.33)

sup
[0,T ]

(
φ(Uτ ), φ(Ũτ )

)
≤ C, (4.34)

‖U ′
τ‖L2(0,T ;H ) + ‖Θ̃τ‖L2(0,T ;H ) ≤ C, (4.35)

‖Uτ − Uτ‖L∞(0,T ;H ) = Cτ1/2, ‖Ũτ − Uτ‖L∞(0,T ;H ) = Cτ1/2, (4.36)

for every 0 < τ ≤ τ∗/10.

Proof. First of all, starting from (4.14) and recalling (4.23), and (4.27), if we choose t ∈ (tj−1, tj], σ0 :=
tj − tj−1 = τ, g = F jτ , v = U j−1

τ , vσ := Ũτ (tj−1 + σ), 0 < σ < τ, and uσ0 = U jτ , we get

|U jτ − U j−1
τ |2

2τ
+

1
2

∫ tj

tj−1

|Gτ (s)|2 ds+ φ(U jτ ) = φ(U j−1
τ ) + 〈F jτ , U jτ − U j−1

τ 〉. (4.37)

In particular, (4.37) yields (4.32) for s = tj−1, t = tj ; the general case of (4.32) trivially follows by adding up
the contributions (4.37) of each subinterval of the partition.

Also, (4.37) implies
|U jτ − U j−1

τ |2
4τ

≤ φ(U j−1
τ ) − φ(U jτ ) + τ |F jτ |2. (4.38)

Turning to the proof of (4.33), we may first of all note that, for every 0 < τ < τ∗ and every n = 1, . . . , N , we
have

1
2
|Unτ |2 −

1
2
|u0|2 =

n∑
k=1

(
1
2
|Ukτ |2 −

1
2
|Uk−1
τ |2

)
≤

n∑
k=1

(
|Ukτ |2 − |Ukτ ||Uk−1

τ |
)
≤

n∑
k=1

|Ukτ ||Ukτ − Uk−1
τ |

≤ η

n∑
k=1

|Ukτ − Uk−1
τ |2

2τ
+

1
2η

n∑
k=1

τ |Ukτ |2 ≤
n∑
k=1

2η
(
φ(Uk−1

τ ) − φ(Ukτ ) + τ |F kτ |2
)

+
1
2η
τ |Ukτ |2

≤ 2η
(
φ(u0) − φ(Unτ ) + ‖f‖2

L2(0,tn;H )

)
+

τ

2η

n∑
k=1

|Ukτ |2

≤ η

τ∗
|Unτ |2 + 2η

(
φ(u0) + S + ‖f‖2

L2(0,tn;H )

)
+

τ

2η

n∑
k=1

|Ukτ |2,

where we have used Young’s inequality for some η > 0, the estimate (4.18), and also (4.1) in the last inequality.
Then, multiplying the previous inequality by 4 and choosing η := τ∗/4, we get

|Unτ |2 ≤ 2|u0|2 + 2τ∗
(
φ(u0) + S + ‖f‖2

L2(0,tn;H )

)
+

8τ
τ∗

n∑
k=1

|Ukτ |2. (4.39)

We can apply Lemma 4.5 with κ := 5, corresponding to τ ≤ τ∗/10, and we easily conclude the L∞ bounds
for Uτ and Uτ in (4.33).

As for (4.35), using Young’s inequality and the estimate (4.19) we deduce from (4.32)

1
4

∫ tn

0

|U ′
τ (s)|2 ds+

1
2

∫ tn

0

|Gτ (s)|2 ds+ φ(Uτ (tn)) ≤ φ(u0) + ‖f‖2
L2(0,T,H ). (4.40)
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Taking into account (4.1) and the estimate (4.33) for Uτ as well, we easily infer from (4.40) the L∞ bound
for φ(Uτ ), and the L2 estimates for U ′

τ and Θ̃τ , also in view of (4.30).
Further, the first of (4.36) ensues from

|Unτ − Uτ (t)|2 ≤ τ

∫ tn

tn−1

|U ′
τ (s)|2 ds ≤ Cτ, (4.41)

on account of (4.35).
On the other hand, (4.12) yields

|Ũτ (t) − Un−1
τ |2 ≤ Cτ

(
1 + φ(Un−1

τ ) + τ |Fnτ |2
)
≤ Cτ,

where the last inequality follows from (4.18), as well as the estimate (4.33) for Uτ and (4.34) for φ(Uτ ); we thus
get the L∞ bound for Ũτ of (4.33) and the second estimate of (4.36). Finally, we have by the definition of Ũτ

φ(Ũτ (t)) ≤ φ(Un−1
τ ) + 〈Fnτ , Ũτ (t) − Un−1

τ 〉 if t ∈ (tn−1, tn],

which yields the uniform bound for φ(Ũτ ) in (4.34). �

Lemma 1.2 is a consequence of the following more refined result.

Proposition 4.7 (Compactness of the approximate solutions). Suppose that φ satisfies (comp). Then, given
any vanishing sequence k �→ τk ↓ 0 of time steps, we can find a further subsequence (still labelled τk), a
limit generalized Minimizing Movement u ∈ H1(0, T ; H ), a non-increasing function ϕ : [0, T ] → R, and two
parametrized Young measures µ = {µt}t∈(0,T ), ν = {νt}t∈(0,T ), such that as k ↑ +∞

Uτk
, Uτk

, Ũτk
→ u in L∞(0, T ; H ), (4.42)

U ′
τk
⇀ u′ weakly in L2(0, T ; H ), (4.43){
φ(Uτk

(t)) → ϕ(t) ≥ φ(u(t)) ∀t ∈ [0, T ],

ϕ(0) = φ(u0),
(4.44)

µ (resp. ν) is the limit Young measure associated with U ′
τk

(resp. Θ̃τk
),

and µt, νt are concentrated on f(t) − ∂�φ(u(t)) for a.e. t ∈ (0, T ),
(4.45)

1
2

∫ t

s

(∫
H

|ξ|2 dµr(ξ) +
∫

H

|ξ|2 dνr(ξ)
)

dr + ϕ(t) ≤ ϕ(s) +
∫ t

s

〈f(r), u′(r)〉dr, ∀0 ≤ s < t ≤ T, (4.46)

1
2

∫ t

s

(
lim inf
k↑+∞

|U ′
τk

(r)|2 +
∫

H

|ξ|2 dνr(ξ)
)

dr + ϕ(t) ≤ ϕ(s) +
∫ t

s

〈f(r), u′(r)〉dr, ∀0 ≤ s < t ≤ T. (4.47)

Finally, if φ also satisfies the continuity assumption (cont), then we have φ(u(t)) = ϕ(t) for a.e. t ∈ (0, T ).

Proof. It is easy to infer from (4.35) and from the elementary inequality

|Uτ (t) − Uτ(s)| ≤ (t− s)
1
2 ‖U ′

τ‖L2(0,T ;H ),

that {Uτ} is equicontinuous on H , for 0 < τ ≤ τ∗/10. Further, (4.33) and (4.34) yield that {Uτ(t)}τ is contained
in some sublevel of the function u �→ φ(u) + 1

2τ∗ |u|
2: recalling (comp), we conclude that {Uτ(t)}τ is relatively

compact in H for every t ∈ [0, T ]. Thanks to the equicontinuity property, the Ascoli compactness theorem
yields that {Uτ}τ is relatively compact in C0([0, T ]; H ).
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Furthermore, always in view of (4.33)–(4.36) and of well-known weak compactness results, we deduce that
there exists a function u ∈ H1(0, T ; H ) for which the convergences (4.42, 4.43) hold (note that Uτk

, Uτk
, and Ũτk

converge to the same limit thanks to (4.36)). In particular, u ∈ GMM(Φ;u0, f).
Then, (4.44) is a consequence of Helly’s theorem: indeed, let us introduce the piecewise constant functions

tτ (t) := min
{
nτ : t ≤ nτ

}
, so that tτ (t) − τ < t ≤ tτ (t), (4.48)

and let

ψτ (t) :=
∫ tτ (t)

0

〈Fτ (s), U ′
τ (s)〉ds.

Let us observe that the map t �→ ζτ (t) := φ(Uτ (t)) − ψτ (t) is nonincreasing; therefore, by Helly’s Theorem we
can suppose that, up to the extraction of a suitable subsequence,

ζ(t) := lim
k↑+∞

ζτk
(t) exists for every t ∈ [0, T ],

and defines a non increasing function ζ. On the other hand, since limτ↓0 tτ (t) = t, (4.43) and (4.20) yield

ψτk
(t) → ψ(t) :=

∫ t

0

〈f(s), u′(s)〉ds ∀t ∈ [0, T ];

it follows that

ϕ(t) := lim
k↑+∞

φ(Uτk
(t)) = lim

k↑+∞
ζτk

(t) − ψτk
(t) = ζ(t) − ψ(t) exists for all t ∈ [0, T ],

and defines a function of bounded variation, which satisfies ϕ(t) ≥ φ(u(t)) in [0, T ] thanks to the lower semi-
continuity of φ.

As for the last assertion in the statement, (4.35) and Fatou’s lemma yield

lim inf
k↑+∞

|U ′
τk

(t) − Fτk
(t)| < +∞ for a.e. t ∈ (0, T );

if (cont) holds, this bound and the inclusion (4.29) entail that lim infk↑+∞ φ(Uτk
(t)) = φ(u(t)) for a.e. t ∈

(0, T ); since φ(Uτk
(t)) → ϕ(t), we get ϕ(t) = φ(u(t)) for a.e. t ∈ (0, T ).

Since we can assume that Fτk
converges to f pointwise a.e., the a priori estimates (4.34), (4.35), as well as

the inclusions (4.26) and (4.29), yield (4.45), via the fundamental theorem for Young measures 3.2.
Finally, (4.32) yields

1
2

∫ t

tτ (s)

(
|U ′
τ (σ)|2 + |Θ̃τ (σ)|2

)
dσ + φ(Uτ (t)) ≤ φ(Uτ (s)) +

∫ tτ (t)

tτ (s)

〈Fτ (σ), U ′
τ (σ)〉dσ

for every choice 0 ≤ s < t ≤ T .
Since tτ (s) ↓ s as τ ↓ 0, we can pass to the limit in the previous inequality thanks to (3.7), thus obtaining

for every 0 ≤ s < s′ < t ≤ T

1
2

∫ t

s′

(∫
H

|ξ|2 dµr(ξ) +
∫

H

|ξ|2 dνr(ξ)
)

dr + ϕ(t) ≤ ϕ(s) +
∫ t

s

〈f(r), u′(r)〉dr.

Since s′ is arbitrary, letting s′ ↓ s we obtain (4.46). Finally, (4.47) follows by the same argument and Fatou’s
lemma. �
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4.4. Convergence results

Proof of Theorem 1. Now, we are going to show that the limit function u ∈ GMM(Φ;u0, f) of Proposition 4.7
is a solution to (GF), if φ satisfies (conv). It is immediate to check that u is a solution of (GF): (3.8) of the
Fundamental Theorem for Young Measures show that

u′(t) =
∫

H

ξ dµt(ξ) for a.e. t ∈ (0, T ), (4.49)

and (4.45) ensures that for a.e. t ∈ (0, T ) µt is concentrated on f(t) − ∂�φ(u(t)); since ∂�φ(u(t)) is a closed
convex set of H , (4.49) yields that u′(t) ∈ f(t) − ∂�φ(u(t)).

Moreover, (1.28) is a direct consequence of (4.46) (for s = 0) and (4.44), since

|u′(t)|2 ≤
∫

H

|ξ|2 dµt(ξ),
∣∣(∂�φ(u(t)) − f(t)

)◦∣∣2 ≤
∫

H

|ξ|2 dνt(ξ), ϕ(0) = φ(u0).

Finally, if (cont) holds, we have φ(u(s)) = ϕ(s) for a.e. s ∈ (0, T ), and (1.29) still follows from (4.46) and the
previous inequality. �

Proof of Theorem 2. Inequality (4.46) and the Lebesgue differentiation theorem yield for a.e. s ∈ (0, T )

1
2

∫
H

|η|2 dµs(η) +
1
2

∫
H

|ξ|2 dνs(ξ) ≤ −ϕ′(s) + 〈f(s), u′(s)〉. (4.50)

If (chain1) holds, since we know that φ ◦ u = ϕ a.e. in (0, T ) by (cont), then Theorem 3.3 and (4.45) ensure
that

ϕ′(s) =
∫

H

〈f(s) − ξ, u′(s)〉dνs(ξ) = 〈f(s) − θ(s), u′(s)〉 for a.e. s ∈ (0, T ), (4.51)

where we have denoted by θ(s) the barycenter of νs, i.e. θ(s) :=
∫

H
ξ dνs(ξ). Combining (4.50) and (4.51), we

get

1
2

∫
H

|η|2 dµs(η) +
1
2

∫
H

|ξ|2 dνs(ξ) ≤ 〈θ(s), u′(s)〉 for a.e. s ∈ (0, T ). (4.52)

Since u′(s) =
∫

H
η dµs(η), and

∫
H

|ξ − θ(s)|2 dνs(ξ) =
∫

H

|ξ|2 dνs(ξ) − |θ(s)|2,
∫

H

|η − u′(s)|2 dµs(η) =
∫

H

|η|2 dµs(η) − |u′(s)|2,

from (4.52) we obtain

1
2

∫
H

|η − u′(s)|2 dµs(η) +
1
2

∫
H

|ξ − θ|2 dνs(ξ) +
1
2
|u′(s) − θ(s)|2 ≤ 0, (4.53)

i.e.,

u′(s) = θ(s) ∈ f(s) − ∂�φ(u(s)), µs = νs = δu′(s) for a.e. s ∈ (0, T ), (4.54)

since µs, νs are concentrated on f(s)−∂�φ(u(s)) for a.e. s ∈ (0, T ). In particular, u is a strong solution of (GF)
and (1.34) holds.
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Applying (3.20), we get

ϕ′(s) = −〈f(s) − u′(s), u′(s)〉 = 〈ξ, u′(s)〉 ∀ξ ∈ aff
(
∂�φ(u(s))

)
for a.e. s ∈ (0, T ),

i.e., denoting by Ks the closed affine hull aff
(
f(s) − ∂�φ(u(s))

)
, u′(s) satisfies the system

u′(s) ∈ Ks, 〈u′(s), u′(s) − η〉 = 0 ∀η ∈ Ks, (4.55)

which yields (1.31).
Finally, observe that (1.33) follows from (4.29) if we show that

lim inf
k↑+∞

|U ′
τk

(s) − u′(s)|2 = 0 for a.e. s ∈ (0, T ). (4.56)

Choosing w := u′ in (3.9) and possibly extracting a further subsequence (still denoted by τk), we get

lim
k↑+∞

〈U ′
τk

(s) − u′(s), u′(s)〉 = 0 for a.e. s ∈ (0, T ). (4.57)

Inequality (4.47), the Lebesgue differentiation theorem and the previous computations yield

1
2

lim inf
k↑+∞

|U ′
τk

(s)|2 +
1
2
|u′(s)|2 ≤ 〈θ(s), u′(s)〉 = |u′(s)|2,

i.e.,
lim inf
k↑+∞

|U ′
τk

(s)|2 ≤ |u′(s)|2 for a.e. s ∈ (0, T ).

Combining this relation with (4.57), we end up with

lim inf
k↑+∞

|U ′
τk

(s) − u′(s)|2 = lim inf
k↑+∞

(
|U ′
τk

(s)|2 − |u′(s)|2 + 2〈u′(s) − U ′
τk

(s), u′(s)〉
)

≤ lim inf
k↑+∞

(
|U ′
τk

(s)| − |u′(s)|2
)
≤ 0. �

Proof of Theorem 3. We first consider the “W 1,1(0, T )” case discussed in Remark 1.5. By (chain2), the map φ◦
u belongs to the Sobolev spaceW 1,1(0, T ), and it coincides almost everywhere with its continuous representative;
moreover, (4.46) with s = 0, (4.44), and the lower semicontinuity of φ yield

lim
t↓0

φ(u(t)) = φ(u0),

so that 0 is a continuity point for φ◦u. Let T ⊂ [0, T ] be the Lebesgue set of φ◦u, thus satisfying |(0, T )\T | = 0;
by (3.22) we have

φ(u(t)) = φ(u0) +
∫ t

0

∫
H

〈f(r) − ξ, u′(r)〉dνr(ξ) dr ∀t ∈ T . (4.58)

Inserting this identity in (4.46) for s := 0, t ∈ T and arguing as in the proof of Theorem 2, we obtain the
integrated form of (4.53)∫ t

0

(∫
H

|η − u′(r)|2 dµr(η) +
∫

H

|ξ − θ(r)|2 dνr(ξ) + |u′(r) − θ(r)|2
)

dr ≤ 0, (4.59)

which yields (4.54) and the energy identity (1.36).
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Then, (1.31) can be proved in the same way as in the previous proof; passing to the limit in (4.32) for s = 0
and taking into account (4.58), we get for t ∈ T

lim sup
k↑∞

∫ tτk
(t)

0

(
1
2
|U ′
τk

(s)|2 +
1
2
|Θ̃τk

(s)|2
)

ds+φ(Uτk
(t)) ≤ φ(u0)+

∫ t

0

〈f(s), u′(s)〉ds =
∫ t

0

|u′(s)|2 ds+φ(u(t)).

Since each term is lower semicontinuous, i.e.,

lim inf
k↑+∞

∫ tτk
(t)

0

|U ′
τk
|2 ds ≥

∫ t

0

|u′|2 ds, lim inf
k↑+∞

∫ tτk
(t)

0

|Θ̃τk
|2 ds ≥

∫ t

0

|u′|2 ds,

and lim infk↑+∞ φ(Uτk
(t)) ≥ φ(u(t)), by comparison we infer for every t ∈ T

lim
k↑∞

φ(Uτk
(tk)) = φ(u(t)), lim sup

k↑∞

∫ t

0

|U ′
τk

(s)|2ds ≤
∫ t

0

|u′(s)|2 ds, (4.60)

which entails the strong convergence (1.37) and thus that (up to the extraction of a further subsequence)
U ′
τk

(t) → u′(t) for a.e. t ∈ (0, T ). Finally, (1.33) follows by passing to the limit in (4.29), also recalling (4.20).
When φ ◦ u is absolutely continuous, too, then the set T coincides with [0, T ], and we recover the complete
statement of Theorem 3. �

4.5. The chain rule and concave perturbations: proof of Theorem 4

We split the proof in two lemmata; observe that the following assumption (4.61) is slightly weaker than (1.39).

Lemma 4.8 (Subdifferential decomposition). Let φ : H → (−∞,+∞] be a function satisfying (comp), let
ψ1 : D(φ) → R be l.s.c., and let ψ2 : co

(
D(φ)

)
→ R be convex and l.s.c. in D(φ). If φ admits the decomposition

φ = ψ1 − ψ2 in D(φ), and

∀M ≥ 0 ∃ρ < 1, γ ≥ 0 such that |∂◦ψ2(u)| ≤ ρ|∂◦ψ1(u)| + γ

for every u ∈ D(∂ψ1) with max(φ(u), |u|) ≤M ,
(4.61)

then every g ∈ ∂φ(u) with max(φ(u), |u|) < M can be decomposed as

g = λ1 − λ2, λi ∈ ∂ψi(u), |λi| ≤ (1 − ρ)−1
(
|g| + γ

)
, i = 1, 2, (4.62)

where ρ, γ are given in terms of M by (4.61).

Proof. Let us formally extend ψ1, ψ2 to +∞ outside D(φ) and co
(
D(φ)

)
respectively; we introduce the Moreau-

Yosida approximation of the convex function ψ2:

ψ2,ε(v) := inf
z∈co(D(φ))

(
|z − v|2

2ε
+ ψ(z)

)
∀v ∈ H , (4.63)

and its l.s.c. envelope

ψ̄2(v) := sup
ε>0

ψ2,ε(v) = lim
ε↓0

ψ2,ε(v), with ψ̄2(v) = ψ2(v) if v ∈ D(φ). (4.64)

In particular, (4.64) yields that
∂ψ2(v) = ∂ψ̄2(v) ∀v ∈ D(φ). (4.65)
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Let us denote by Jε the related resolvent operator associated with ∂ψ̄2, i.e. Jε := (I + ε∂ψ̄2)−1, which is a
contraction in H . Since ψ2 is convex, it is well-known (see [12], Props. 2.6, 2.11), that ψ2,ε is a C1,1 convex
function whose Fréchet differential Dψ2,ε satisfies

Dψ2,ε(u) =
u− Jε(u)

ε
, Dψ2,ε(u) ⊂ ∂ψ̄2(Jε(u)), |Dψ2,ε(u)| ≤ |∂◦ψ̄2(u)|. (4.66)

For a given u ∈ D(∂φ) with max{φ(u), |u|} < M, and for every 0 < τ < τ∗/8 and 0 < ε < ε∗, we consider the
minimization problem

find w ∈ H such that w ∈ argmin
z∈H

{
|z − u|2

2τ
+ ψ1(z; g) − ψ2,ε(z)

}
; (4.67)

since ψ1(·; g) − ψ2,ε∗ ≥ ψ1(·; g) − ψ2,ε ≥ φ(·; g), assumption (comp) ensures that the minimum problem (4.67)
admits at least a solution wε,τ , which fulfills by construction

|wε,τ − u|2
2τ

+ φ(wε,τ ; g) ≤
|wε,τ − u|2

2τ
+ ψ1(wε,τ ; g) − ψ2,ε(wε,τ )

≤ ψ1(u; g) − ψ2,ε∗(u).

Applying the estimate (4.12) of Lemma 4.1 to the functional ψ1(·; g)− ψ2,ε, we deduce that for ε, τ sufficiently
small we have

max {φ(wε,τ ), |wε,τ |} ≤M,
|wε,τ − u|√

τ
≤M ′, (4.68)

where M ′ = C(1 + M + |g|2). In particular, the sequence {wε,τ}ε,τ is relatively compact in H by (comp).
Moreover, since wε,τ complies with (4.67), there exists λ1

ε,τ ∈ ∂ψ1(wε,τ ) fulfilling

wε,τ − u

τ
+ λ1

ε,τ −Dψ2,ε(wε,τ ) = g, (4.69)

whence ∂ψ1(wε,τ ) is non empty. Then, we deduce from (4.61) that ∂ψ2(wε,τ ) = ∂ψ̄2(wε,τ ) 	= ∅; setting

λ2
ε,τ := Dψ2,ε(wε,τ ) ∈ ∂ψ̄2(Jε(wε,τ )),

we get by (4.66) and (4.61)

|λ2
ε,τ | = |Dψ2,ε(wε,τ )| ≤ |∂◦ψ2(wε,τ )| ≤ ρ|λ1

ε,τ | + γ. (4.70)

Combining (4.69) and (4.70), we obtain

|λ1
ε,τ | ≤

|wε,τ − u|
τ

+ |Dψ2,ε(wε,τ )| + |g| ≤ |wε,τ − u|
τ

+ |g| + ρ|λ1
ε,τ | + γ,

i.e.,

|λ1
ε,τ | ≤ (1 − ρ)−1

( |wε,τ − u|
τ

+ |g| + γ
)
. (4.71)

Taking into account (4.68), (4.70), and (4.71), we deduce that, for every 0 < τ < τ∗/8, there exist wτ , λ1
τ , and

λ2
τ ∈ H and a suitable subsequence k �→ εk ↓ 0 such that

wεk,τ → wτ , λ1
εk,τ ⇀ λ1

τ , λ2
εk,τ ⇀ λ2

τ as k ↑ +∞.
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We notice that λ2
τ ∈ ∂ψ̄2(wτ ) = ∂ψ2(wτ ) by the strong-weak closedness of ∂ψ̄2 and by (4.65), that ψ̄2(wτ ) =

ψ2(wτ ), and therefore wτ is a minimizer of

v �→ 1
2τ

|v − u|2 + φ(v; g) v ∈ D(φ), (4.72)

so that
g − τ−1(wτ − u) ∈ ∂φ(wτ ).

Passing to the limit in (4.69) as ε ↓ 0, we find

wτ − u

τ
+ λ1

τ − λ2
τ = g, (4.73)

so that λ1
τ is the sum of a vector in ∂φ(wτ ) and a vector in ∂ψ2(wτ ); since ψ1 = φ + ψ2 in D(φ), we deduce

that λ1
τ ∈ ∂ψ1(wτ ), too. The estimates (4.70)–(4.71) and (4.73) yield⎧⎪⎪⎨⎪⎪⎩

|λ1
τ | ≤ (1 − ρ)−1

(
|wτ − u|

τ
+ |g| + γ

)
,

|λ2
τ | ≤ ρ(1 − ρ)−1

(
|wτ − u|

τ
+ |g| + γ

)
+ γ.

(4.74)

Recalling (4.8), as g ∈ ∂φ(u) we have limτ↓0 wτ−u
τ = 0; therefore (4.74) yield, up to some subsequence,

λ1
τ ⇀ λ1, λ2

τ ⇀ λ2 ∈ ∂ψ̄2(u) = ∂ψ2(u), as τ ↓ 0, λ1 − λ2 = g ∈ ∂φ(u) (4.75)

with
|λ1| ≤ (1 − ρ)−1

(
|g| + γ

)
, |λ2| ≤ ρ(1 − ρ)−1

(
|g| + γ

)
+ γ ≤ (1 − ρ)−1

(
|g| + γ

)
(4.76)

Arguing as in the previous lines, (4.75) yields λ1 ∈ ∂ψ1(u), and (4.62) follows. �
Lemma 4.9. Let us assume that φ : H → (−∞,+∞] admits the decomposition φ = ψ1 −ψ2 as in Lemma 4.8,
and let us suppose that (1.39) holds. Then for every M ≥ 0 there exists a constant C > 0 such that every
g ∈ ∂�φ(u) with max(φ(u), |u|) ≤M can be decomposed as

g = λ1 − λ2, λ1 ∈ ∂�ψ1(u), λ2 ∈ ∂ψ2(u), |λi| ≤ C
(
1 + |g|

)
, i = 1, 2. (4.77)

In particular, if ψ1 satisfies one of the Chain Rule conditions (chain1,2), then φ satisfies the same chain rule
property, too.

Proof. By the previous lemma and the definition of limiting subdifferential, if g ∈ ∂�φ(u), then we can find
sequences uk ∈ D(∂φ), gk = λ1

k − λ2
k ∈ ∂φ(uk), λik ∈ ∂ψi(uk), i = 1, 2, k ∈ N, such that

uk → u, gk = λ1
k − λ2

k ⇀ g,

M ′ = sup
k

(φ(uk), |uk|) < +∞, |λik| < C(M ′)(1 + |gk|). (4.78)

Possibly extracting a subsequence, we thus have

λik ⇀ λi, i = 1, 2, λ2 ∈ ∂ψ2(u), g = λ1 − λ2. (4.79)

Moreover,
lim sup
k↑+∞

ψ2(uk) ≤ lim sup
k↑+∞

〈λ2
k, uk − u〉 + ψ2(u) = ψ2(u) < +∞
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and therefore
lim sup
k↑+∞

ψ1(uk) = lim sup
k↑+∞

(
φ(uk) + ψ2(uk)

)
≤M ′ + ψ2(u) < +∞.

It follows that λ1 ∈ ∂�ψ1(u) and (1.39) yields

|λ1| ≤ |g| + |λ2| ≤ |g| + ρ|λ1| + γ, i.e. |λ1| ≤ (1 − ρ)−1
(
|g| + γ

)
, (4.80)

which proves (4.77).
Let us now suppose that ψ1 satisfies (chain1); in order to check that φ satisfies the same property, let us

consider a curve v ∈ H1(0, T ; H ) such that φ(v(t)) = ϕ(t) for a.e. t ∈ (0, T ), ϕ being of bounded variation,
and a selection ξ ∈ L2(0, T ; H ) with ξ(t) ∈ ∂�φ(v(t)) for a.e. t ∈ (0, T ). By (4.77), we get∫ T

0

|∂◦�ψ1(v(t))|2 dt+
∫ T

0

|∂◦ψ2(v(t))|2 dt < +∞. (4.81)

Being ψ2 convex, (4.81) shows that ψ2 ◦ v is absolutely continuous with

d
dt
ψ2(v(t)) = 〈λ2, v′(t)〉 ∀λ2 ∈ ∂ψ2(v(t)) for a.e. t ∈ (0, T ). (4.82)

Thus, ϕ+ψ2 ◦v is of bounded variation, and ψ1(v(t)) = ϕ(t)+ψ2(v(t)) for a.e. t ∈ (0, T ); applying Theorem 3.3
we get

d
dt

(
ϕ(t) + ψ2(v(t))

)
= 〈λ1, v′(t)〉 ∀λ1 ∈ ∂�ψ1(v(t)) for a.e. t ∈ (0, T ), (4.83)

and therefore

d
dt
ϕ(t) = 〈λ1 − λ2, v′(t)〉 ∀λ1 ∈ ∂�ψ1(v(t)), λ2 ∈ ∂ψ2(v(t)) for a.e. t ∈ (0, T ).

Applying (4.77) again we conclude; when ψ1 satisfies (chain2), too, it is immediate to check that φ ◦ u belongs
to AC(0, T ). �

5. Coupling diffusion equations with quasistationary conditions

5.1. An abstract setting

Let us consider a standard Hilbert triplet

V ⊂ H ≡ H ′ ⊂ V ′, the inclusions being dense and compact. (5.1)

Since we have adopted the usual convention of identifying H with its dual, the duality pairing between V and
V ′ is the (unique) extension by continuity of the H-scalar product (·, ·)H , i.e.

V ′〈u, v〉V = (u, v)H ∀u ∈ H, v ∈ V. (5.2)

We are given a nonnegative, symmetric, and continuous bilinear form a : V × V → R, thus satisfying for some
γ > 0

0 ≤ a(u) := a(u, u) ≤ γ‖u‖2
V ∀u ∈ V, (5.3)

and a proper functional F : H → [0,+∞] whose sublevels{
χ ∈ H : F (χ) ≤ s

}
are strongly compact in H. (5.4)
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We denote by A : V → V ′ the continuous linear operator associated with a

V ′〈Au, v〉V = a(u, v) ∀u, v,∈ V, (5.5)

and by Λ : H → 2H the H-subdifferential of F , i.e.

ϑ ∈ Λχ ⇔ χ ∈ D(F ) ⊂ H, lim inf
‖η−χ‖H→0

F (η) − F (χ) − (ϑ, η − χ)H
‖η − χ‖H

≥ 0. (5.6)

In this section, we aim at studying evolution problems of the following type

Problem 5.1 (Quasistationary evolution systems). Given u0 ∈ H and f : (0, T ) → V ′, find a pair u, χ :
(0, T ) → H , with u− χ ∈ V , which satisfies at a.e. t ∈ (0, T ) the system⎧⎪⎨⎪⎩

u′(t) +A(u(t) − χ(t)) = f(t) in V ′,
χ(t) + Λχ(t) � u(t) in H,

u(0) = u0.

(5.7)

We will distinguish two cases:

(1) The form a is coercive, i.e., there exists a > 0 s.t.

a(u) ≥ a‖u‖2
V ∀u ∈ V ; (5.8)

(2) The form a is only weakly coercive, i.e., there exists λ, a > 0 such that

a(u) + λ‖u‖2
H ≥ a‖u‖2

V ∀u ∈ V. (5.9)

In fact, since the quadratic form a(·) is nonnegative, for every λ > 0 we can find a > 0 such that (5.9)
holds.

1) The coercive case

If (5.8) holds, we will denote by H the dual space

H := V ′, endowed with the scalar product

〈u, v〉H := a(A−1u,A−1v) = V ′〈u,A−1v〉V = V ′〈v,A−1u〉V ,
(5.10)

and we want to show that the system (5.7) is associated with the Gradient Flow in H of the functional φ
defined by

φ(u) := inf
χ∈H

F (u, χ), F (u, χ) :=

{
1
2‖u− χ‖2

H + F (χ) if u, χ ∈ H,

+∞ otherwise.
(5.11)

Remark 5.2 (H or V ′?). The spaces H and V ′ are linearly and topologically isomorphic, the sole possible
difference being the choice of their scalar products. On the other hand, the notion of Gradient Flow is intrin-
sically related to this choice, and in the applications the scalar product (5.10) could be different from the one
usually adopted in V ′. Therefore, we will use the letter H when we want to stress the role of the particular
scalar product and highlight the link with the general theory of Gradient Flows.
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The connection with the previous theory is provided by the following preliminary result:

Proposition 5.3 (The subdifferential of the marginal function φ). The functional φ : H → [0,+∞] defined
by (5.11) has domain D(φ) = H and satisfies (comp) and (cont). For every u ∈ H, the infimum in (5.11) is
attained, and therefore for every u ∈ H the set

M(u) :=
{
χ ∈ H : F (u, χ) = φ(u)

}
is not empty, (5.12)

and satisfies
χ ∈M(u) ⇒ χ+ Λχ � u. (5.13)

If u ∈ D(∂φ) (the Fréchet subdifferential of φ in H ), ∂φ(u) is single-valued, and the set M(u) contains a
unique element χ, which fulfils

u− χ ∈ V, ∂φ(u) = A(u− χ) ∈ H = V ′. (5.14)

For every u ∈ D(∂�φ) (the domain of the limiting subdifferential of φ in H )

ξ ∈ ∂�φ(u) ⇒ ∃χ ∈M(u) : u− χ ∈ V, ξ = A(u − χ). (5.15)

Proof. Let us point out that for every positive constant C the sublevels

{(u, χ) ∈ H ×H : F (u, χ) ≤ C}

are compact H ×H , whence we easily get the existence of a minimizer χ ∈ M(u) of (5.11) for every u ∈ H .
Since φ(u) = F (u, χ) for every χ ∈ M(u), it is immediate to check that the sublevels of φ are closed and
bounded in H , hence compact in H , so that φ satisfies (comp). Then, (5.13) is simply the Euler equation
satisfied by the minimizer of (5.11).

Let us now suppose that u ∈ H, ξ ∈ ∂φ(u), and let χ be any element in M(u): observe that the minimality
of χ yields

φ(w) = min
η∈H

1
2
‖η − w‖2

H + F (η) ≤ 1
2
‖χ− w‖2

H + F (χ) =
1
2
‖χ− w‖2

H − 1
2
‖χ− u‖2

H + φ(u),

so that for every w ∈ H we have, by the very definition of subdifferential,

0 ≤ lim inf
w→u

φ(w) − φ(u) − 〈ξ, w − u〉H
|w − u|H

≤ lim inf
w→u

1
2‖w − χ‖2

H − 1
2‖u− χ‖2

H − 〈ξ, w − u〉H
|w − u|H

·

Choosing w := u+ hz, h ∈ R, 0 	= z ∈ H , we get

0 ≤ lim inf
h→0

1
2h

2‖z‖2
H + h(u− χ, z)H + 1

2‖u− χ‖2
H − 1

2‖u− χ‖2
H − h〈ξ, z〉H

|h| |z|H

= |z|−1
H lim inf

h→0

(1
2
|h| ‖z‖2

H +
h

|h|
(
(u − χ, z)H − 〈ξ, z〉H

)
= −|z|−1

H

∣∣∣(u − χ, z)H − 〈ξ, z〉H
∣∣∣.

Being z ∈ H and χ ∈M(u) arbitrary, recalling (5.2) and (5.10), we get (5.14).
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Finally, if ξ ∈ ∂�φ(u), then the definition of limiting subdifferential and (5.14) show that there exist a
constant C and sequences uk, χk ∈ H, uk − χk ∈ V, ξk ∈ H such that

χk ∈M(uk), ξk = A(uk − χk) = ∂φ(uk),

uk → u, ξk ⇀ ξ in H , φ(uk) = F (uk, χk) ≤ C.
(5.16)

It follows that uk − χk converges to A−1ξ weakly in V and strongly in H ; being the sequence {χk} relatively
compact in H , we get that uk → u and χk → χ := u− A−1ξ strongly in H . Then, we can pass to the limit in
the family of inequalities

F (uk, χk) ≤ F (uk, η) ∀η ∈ H,

obtaining
F (u, χ) ≤ F (u, η) ∀η ∈ H, i.e., χ ∈M(u).

Finally, the above inequalities yield

lim sup
k→+∞

φ(uk) = lim sup
k→+∞

F (uk, χk) ≤ lim sup
k→+∞

F (uk, χ) = F (u, χ) = φ(u), (5.17)

which shows that φ satisfies (cont) and the approximating family χk satisfies

lim
k→+∞

F (χk) = F (χ). (5.18)

�
Corollary 5.4 (Gradient flows solve the system). If u ∈ H1(0, T ; H ) is a solution of the Gradient Flow
equation (GF) in H for the functional φ defined by (5.11) and the data u0 ∈ H, f ∈ L2(0, T ; H ), then
u ∈ L∞(0, T ;H) and there exists χ ∈ L∞(0, T ;H) with

u− χ ∈ L2(0, T ;V ), χ(t) ∈M(u(t)) for a.e. t ∈ (0, T ), (5.19)

such that the pair (u, χ) solves the system (5.7).

Applying Theorem 1, we readily get the following existence result:

Theorem 5.5. Under the previous assumptions, let us suppose that for every u ∈ H the set{
χ ∈ H : χ ∈M(u), u− χ ∈ V

}
is convex. (5.20)

Then, Theorem 1 can be applied, and every generalized Minimizing Movement u ∈ GMM(Φ;u0, f) with u0 ∈
H, f ∈ L2(0, T ; H ) is a H1(0, T ; H )-solution of Problem 5.1, fulfilling the properties stated in Corollary 5.4.

Now, we investigate the possibility to prove a chain rule for the functional φ. Let us denote by G the
functional

G(χ) :=
1
2
‖χ‖2

H + F (χ), χ ∈ H, (5.21)

and by G∗ its Legendre-Fenchel-Moreau conjugate (in H), i.e.,

G∗(u) := sup
χ∈H

(u, χ)H −G(χ) = sup
χ∈H

(u, χ)H −
(

1
2
‖χ‖2

H + F (χ)
)
. (5.22)

Of course, G∗ is a convex functional defined in D(φ) = H , and

G∗(u) ≥ (u, χ)H −G(χ) ∀χ ∈ H,

G∗(u) = (u, χ)H −G(χ) iff χ ∈M(u).
(5.23)



606 R. ROSSI AND G. SAVARÉ

Since φ admits the decomposition (cf. Rem. 1.9)

φ(u) =
1
2
‖u‖2

H −G∗(u), (5.24)

it is natural to check if Theorem 4 can be applied. The easiest case is provided by the following result:

Proposition 5.6. Suppose that for every M ≥ 0 there exist constants ρ < 1, γ ≥ 0 such that the following a
priori estimate holds:

u ∈ V, χ ∈M(u),

max(‖u‖H, F (χ)) ≤M

}
⇒ χ ∈ V, ‖Aχ‖V ′ ≤ ρ‖Au‖V ′ + γ. (5.25)

Then, the decomposition (5.25) provides a dominated perturbation of ψ1 := 1
2‖ · ‖2

H. Thus, φ satisfies the Chain
rule condition (chain2), which in this case yields that t �→ F (u(t), χ(t)) is absolutely continuous with

d
dt

(φ ◦ u) =
d
dt

F (u, χ) = V ′〈u′, u− χ〉V a.e. in (0, T ), (5.26)

whenever
u ∈ H1(0, T ;V ′), χ ∈M(u), sup

t∈[0,T ]

F(u, χ) < +∞, u− χ ∈ L2(0, T ;V ). (5.27)

Proof. Let us first observe that
λ1 ∈ ∂ψ1(u) ⇔ u ∈ V, λ1 = Au. (5.28)

Thus, if u ∈ D(∂ψ1), then also u ∈ D(∂ψ2), since it is easy to check by (5.25) that

χ ∈M(u) ∩ V ⇒ Aχ ∈ ∂G∗(u). (5.29)

To see this, it is sufficient to notice that by (5.23) we have

G∗(v) −G∗(u) ≥ (v, χ)H −G(χ) −
(
(u, χ)H −G(χ)

)
= (v − u, χ)H = 〈v − u,Aχ〉H ∀v ∈ H.

(5.30)

We want to show now that if u ∈ V , then

λ2 ∈ ∂G∗(u) ⇒ ξ := A−1λ2 ∈ co
(
M(u)

)
. (5.31)

Indeed, recall that if λ2 ∈ ∂G∗(u), then

G∗(v) −G∗(u) ≥ 〈λ2, v − u〉H = (ξ, v − u)H ∀v ∈ H,

whence, denoting by G∗∗ the lower semicontinuous and convex envelope of G in H , we get

(ξ, u)H −G∗(u) ≥ sup
v

(ξ, v)H −G∗(v) = G∗∗(ξ). (5.32)

Since G has compact sublevels in H and it has superlinear growth, there exists a Borel probability measure µ
in H such that ∫

H

λdµ(λ) = ξ, G∗∗(ξ) =
∫
H

G(λ) dµ(λ) ≤ G(ξ) (5.33)
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(cf. [38], Th. 3.6 and (3.38), p. 419). Integrating (5.32), we obtain

G∗(u) ≤ (ξ, u)H −G∗∗(ξ) =
∫
H

((λ, u)H −G(λ)) dµ(λ). (5.34)

Since (λ, u)H −G(λ) ≤ G∗(u) for every λ ∈ H , the previous inequality shows that µ is concentrated on the set
M(u), which yields (5.31) in view of (5.33).

Further, (5.25) shows that

‖λ2‖V ′ = ‖Aξ‖V ′ ≤
∫
M(u)

‖Aχ‖V ′ dµ(χ) ≤ ρ‖Au‖V ′ + γ,

i.e., φ satisfies the assumptions of Theorem 4, and therefore the Chain Rule condition (chain2) (see Rems. 1.8
and 1.9). �

The crucial assumption (5.25) in the previous proposition allows to obtain a separate control on u and χ

in V from the estimate of u − χ in the same space. The simplest case in which this is possible is when F (χ)
controls the norm of χ in V .

In some circumstances this does not occur: the next proposition shows that it is sufficient to control the
norm of u and χ in a bigger space W ⊃ V , such that H lies “in the middle” between W and V ′. This can be
formalized in terms of Interpolation Theory, by asking that (W,V ′)1/2,2 ⊂ H as in (5.37) (since (V, V ′)1/2,2 = H

(5.37) is in fact an identity, up to equivalent norms). In fact, the next result shows that for the “W 1,1(0, T )”
chain rule the weaker assumption (W,V ′)1/2,1 ⊂ H is sufficient.

Proposition 5.7. Let us suppose that W is an intermediate Banach space between V and H (i.e. V ⊂W ⊂ H,
the inclusions being continuous), which satisfies

(W,V ′)1/2,1 ⊂ H, e.g., for a suitable constant K > 0 ‖v‖H ≤ K ‖v‖1/2
W ‖v‖1/2

V ′ ∀v ∈W. (5.35)

If for every constant M ≥ 0 there exists a constant C > 0 such that the following a priori estimate holds

u− χ ∈ V, χ ∈M(u)

max(‖u‖H , F (χ)) ≤M

}
⇒ ‖χ‖W ≤ C (1 + ‖A(u − χ)‖V ′) , (5.36)

then φ satisfies the Chain rule condition (5.26), (5.27), which corresponds to the “W 1,1(0, T )” case of Re-
mark 1.5. If, moreover, H satisfies the stronger interpolation property

(W,V ′)1/2,2 ⊂ H (5.37)

then φ satisfies the Chain rule condition (chain2) in its stronger “AC(0, T )” form.

Proof. Let us suppose that u ∈ H1(0, T ;V ′), ξ ∈ L2(0, T ;V ′) with ξ(t) ∈ ∂�φ(v(t)) for a.e. t ∈ (0, T ) and
supt∈[0,T ] φ(u(t)) < +∞; it follows from (5.15) that there exists χ ∈ L∞(0, T ;H) with χ(t) ∈ M(u(t)) and
ξ(t) = A(u(t) − χ(t)) for a.e. t ∈ (0, T ); let us first show that

φ ◦ u ∈W 1,1(0, T ),
d
dt

(φ ◦ u) = 〈A(u − χ), u′〉H a.e. in (0, T ). (5.38)

For h ∈ R, t+ h ∈ (0, T ), let uh := u(· + h), χh := χ(· + h): a simple computation shows that

φ(uh) − φ(u) = F (uh, χh) − F (u, χ) ≤ F (uh, χ) − F (u, χ) =
1
2
‖uh − χ‖2

H − 1
2
‖u− χ‖2

H

=
1
2
(uh − u, u+ uh − 2χ)H = (uh − u, u− χ)H +

1
2
‖uh − u‖2

H ,

(5.39)
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and, writing the same formula at the time t− h, we get

φ(u) − φ(u−h) ≤ (u− u−h, u−h − χ−h)H +
1
2
‖u− u−h‖2

H ;

replacing −h with h and inverting the sign, we end up with

φ(uh) − φ(u) ≥ (uh − u, uh − χh)H − 1
2
‖uh − u‖2

H .

If we subtract the term h〈A(u−χ), u′〉H from both the previous inequalities and recall that u−χ, uh−χh ∈ V ,
we obtain

〈uh − u,A(uh − χh)〉H − h〈u′, A(u− χ)〉H − 1
2
‖uh − u‖2

H

≤ φ(uh) − φ(u) − h〈u′, A(u − χ)〉H

≤ 〈uh − u,A(u− χ)〉H − h〈u′, A(u− χ)〉H +
1
2
‖uh − u‖2

H ,

(5.40)

hence∣∣∣φ(uh) − φ(u) − h〈u′, A(u− χ)〉H
∣∣∣ ≤ ∣∣∣〈uh − u,A(uh − χh)〉H − h〈u′, A(u − χ)〉H

∣∣∣
+
∣∣∣〈uh − u,A(u− χ)〉H − h〈u′, A(u− χ)〉H

∣∣∣+ ‖uh − u‖2
H .

(5.41)

Now we choose h > 0, we divide by h, and we integrate on an interval (0, T − δ), δ > h. Recalling that as h ↓ 0

uh − u

h
→ u′, uh − χh → u− χ strongly in L2(0, T − δ; H ),

we get

lim sup
h↓0

∫ T−δ

0

∣∣∣φ(uh) − φ(u)
h

− 〈u′, A(u − χ)〉H
∣∣∣dt ≤ lim sup

h↓0

1
h

∫ T−δ

0

‖uh − u‖2
H dt. (5.42)

Since u − χ ∈ V, χ ∈M(u) a.e. in (0, T ) and ‖u‖H, F (χ) are uniformly bounded on (0, T ), from (5.36) we get
χ ∈ L2(0, T ;W ), and therefore u ∈ L2(0, T ;W ) as well, being V continuously imbedded in W .

The interpolation inequality (5.35) thus yields

1
h

∫ T−δ

0

‖u− uh‖2
H dt ≤ K2

∫ T−δ

0

∥∥∥∥u− uh
h

∥∥∥∥
V ′

‖u− uh‖W dt

≤ C‖u′‖L2(0,T ;V ′) ‖u− uh‖L2(0,T ;W ),

(5.43)

which goes to 0 as h ↓ 0. Then, (5.38) readily follows from (5.42) and (5.43).
Finally, if (5.37) holds, then from u ∈ L2(0, T ;W ) with u′ ∈ L2(0, T ;V ′) we deduce u ∈ C0(0, T ;H); it is

easy to check from (5.39) and the lower semicontinuity of φ that the map φ ◦ u is continuous and therefore it
belongs to AC(0, T ). �

Theorem 5.8 (An existence result). If either assumption (5.25) or assumptions (5.36), (5.37) of the above
propositions are verified, then for every u0 ∈ H, f ∈ L2(0, T ;V ′) Problem 5.1 admits an “energy solution”
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u ∈ H1(0, T ;V ′) ∩ C0([0, T ];H), χ ∈ L∞(0, T ;H) with ϑ = u − χ ∈ L2(0, T ;V ), which satisfies a.e. in (0, T )
(here a(v) := a(v, v))

χ ∈M(u), which yields χ+ Λχ � u, (5.44)

a(u− χ− A−1f) = min
σ∈M(u)

a(u− σ −A−1f), (5.45)

and the energy identity∫ t

s

a(ϑ(r)) dr + F (u(t), χ(t)) = F (u(s), χ(s)) +
∫ t

s
V ′〈f(r), ϑ(r)〉V dr ∀s, t ∈ [0, T ]. (5.46)

Moreover, u ∈ C0([0, T ];H).

The proof follows directly from Theorem 3 by elementary computations.

2) The weakly coercive case

When the operator A is no more injective and only (5.9) holds true, we can argue by approximation and
recover exactly the same result as before.

Theorem 5.9. Theorem 5.8 also holds (except for (5.45)) in the weakly coercive case.

Proof. Let us consider the bilinear forms

aλ(u, v) := a(u, v) + λ(u, v)H ∀u, v ∈ V

which are coercive for every λ > 0; Theorem 5.8 yields the existence of an energy solution (uλ, χλ) to Problem 5.1;
since

F (uλ, χλ) ≥
1
2
‖uλ − χλ‖2

H ,

we obtain the a priori bounds

‖uλ − χλ‖L2(0,T ;V ) + ‖u′λ‖L2(0,T ;V ′) + sup
[0,T ]

F (uλ, χλ) ≤ C

with C independent of λ > 0. Thus we can pass to the limit (up to extracting a suitable vanishing subse-
quence λk) as λk ↓ 0, obtaining

uλk
⇀ u in H1(0, T ;V ′), uλk

− χλk
⇀ u− χ̄ in L2(0, T ;V )

χλk
⇀∗ χ̄ in L∞(0, T ;H), uλk

(t) ⇀ u(t) in H ∀t ∈ [0, T ],

u′ +A(u − χ̄) = f a.e. in (0, T ).

In order to show the strong convergence of {A(uλk
−χλk

)} in L2(0, T ;V ′), we argue as in the proof of Theorem 3,
trying to get more information from the energy inequality. In fact, (5.46) yields∫ t

0

a(u(r) − χ̄(r)) dr + φ(u(t)) ≤ lim sup
k↑+∞

∫ t

0

aλk
(uλk

(r) − χλk
(r)) dr + φ(uλk

(t))

≤ φ(u0) +
∫ t

0
V ′〈f(r), u(r) − χ̄(r)〉V dr.

(5.47)

On the other hand, arguing as in Theorem 3.3, the Chain rule (5.26) shows that t �→ φ(u(t)) is in AC(0, T ) and

d
dt

(φ ◦ u) = V ′〈u′, u− χ̄〉V = V ′〈f −A(u − χ̄), u− χ̄〉V ,
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so that

φ(u0) = φ(u(t)) −
∫ t

0
V ′〈f(r) −A(u(r) − χ̄(r)), u(r) − χ̄(r)〉V dr

at each point t ∈ [0, T ]. Substituting the identity in (5.47) and using the lower semicontinuity of each term of
the sum, we obtain

A(uλk
− χλk

) → A(u − χ̄) strongly in L2(0, T ;V ′), φ(uλk
(t)) → φ(u(t)) ∀t ∈ [0, T ]. (5.48)

Therefore, up to the further extraction of a subsequence (still denoted by λk), there exists a Borel negligible set
N ⊂ (0, T ) such that A(uλk

− χλk
) converges to A(u − χ̄) in V ′ in (0, T ) \ N .

Let now L(t) be the (not empty) set of all (strong) limit points of χλk
in H

L(t) :=
∞⋂
p=1

{
χλk

(t) : k ≥ p
}H

, (5.49)

and let us choose t ∈ (0, T ) \N and χ ∈ L(t); there exists a vanishing subsequence λk′ ↓ 0 (possibily depending
on t) such that χλk′ (t) → χ in H . From the convergence of the energies (5.48) it is immediate to check that
uλk′ (t) − χλk′ (t) → u(t)− χ in H and χ ∈M(u(t)). Further, as A(uλk′ (t) − χλk′ (t)) converges in V ′, the weak
coercivity yields uλk′ (t) − χλk′ (t) → u(t)− χ in V . We deduce that A(u(t) − χ̄(t)) = A(u(t) − χ). Operating a
measurable selection χ(t) ∈ L(t), we conclude. �

5.2. Applications

We conclude this paper by briefly showing that the PDE Examples discussed in Section 2 are particular cases
of Problem 5.1: in each situation, the application fits in the framework we have proposed in the first part of
this section.

The Stefan-Gibbs-Thomson problem. Let us first consider Example 5. We have already discussed the
functional setting: V ′ = H−1(Ω), A := −∆, V := H1

0 (Ω) and

F0(χ) := α

∫
Ω

|Dχ| +
∫

Ω

I{−1,1}(χ) dx, F0(u, χ) :=
1
2
‖u− χ‖2

L2(Ω) + F0(χ),

φ0(u) := min
χ

F0(u, χ).

We want to show that in this situation we can apply Theorem 5.5.
Here the crucial remark, which is somehow hidden in the original proof by Luckhaus and was also used in a

different form by [35], is that for every u ∈ H the set{
χ ∈ H : χ ∈M0(u), u− χ ∈ H1

0 (Ω)
}

is a singleton,

so that (5.20) trivially holds.
In fact, if χi ∈M(u) and u−χi ∈ H1

0 (Ω), i = 1, 2, we have in particular χ1−χ2 ∈ H1
0 (Ω); on the other hand,

since χi(x) ∈ {−1, 1} for a.e. x ∈ Ω, the range of values of χ2 − χ1 is {0, 2,−2}. Hence, χ2 − χ1 is necessarily
constant (an H1-function on a connected domain cannot have jumps), and null at the boundary, thus χ1 = χ2.

Finally, we have to check that the elements in the limiting subdifferential of φ0 satisfy the Gibbs-Thomson
condition in the weak form (2.45): this important property is stated by the following lemma:

Lemma 5.10 (The Gibbs-Thomson condition induced by ∂�φ0). Let us suppose that

ξ = −∆ϑ ∈ ∂�φ0(u) with ϑ = u− χ ∈ H1
0 (Ω), χ ∈M0(u). (5.50)
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Then on the essential boundary S = ∂∗E± separating the two phases E± :=
{
x ∈ Ω : χ(x) = ±1

}
the Gibbs-

Thomson condition H = ϑν holds in the weak form

α

∫
Ω

(
div ζ − νT Dζ ν

)
d|Dχ| =

∫
Ω

div(ϑζ)χ dx, ∀ζ ∈ C2(Ω; Rm) ζ · n = 0 on ∂Ω, (5.51)

where the Radon-Nikodym derivative ν = d(Dχ)
d|Dχ| is the measure theoretic inner normal to ∂∗E+.

Proof. Let us first suppose that ξ in (5.50) belongs to the Fréchet subdifferential ∂φ0(u). We introduce the
flow Xs : Ω → Ω associated with ζ, i.e. the family of diffeomeomorphisms satisfying the system of ODE for
(s, x) ∈ R × Ω {

d
dsXs(x) = ζ(Xs(x))

X0(x) = x.
(5.52)

When Ω is sufficiently regular, condition ζ · n = 0 ensures that Ω is an invariant region for Xs, i.e.

Xs(Ω) = Ω ∀s ∈ R, (5.53)

and the map x �→ Xs(x) is a C2 diffeomeomorphism with inverse X−s; setting

Ds(x) := DxXs(x), Js(x) := detDs(x) (5.54)

we have {
d
dsDs(x) = Dζ(Xs(x))Ds(x),

D0(x) = I,

{
d
dsJs(x) = div ζ(Xs(x))Js(x),

J0(x) = 1.
(5.55)

We consider a perturbation of (u, ϑ, χ) given by

χs(x) := χ(X−s(x)), ϑs(x) := ϑ(x), us := ϑ+ χs; (5.56)

since χs still belongs to BV (Ω; {−1, 1}) and 1
2 |Dχs| coincides with the (m− 1)-dimensional Hausdorff measure

restricted to Ss = Xs(S), the first variation formula for the area functional (see [44], Chap. 16 and [2], Th. 7.31),
yields

d
ds

(∫
Ω

|Dχs|
)
s=0

=
∫

Ω

(
div ζ − νT Dζ ν

)
d|Dχ|. (5.57)

Moreover,
d
ds

(∫
Ω

ϑ(x)us(x) dx
)
s=0

=
d
ds

(∫
Ω

ϑ(x)χs(x) dx
)
s=0

=
∫

Ω

div
(
ϑ ζ

)
χ dx (5.58)

since us − u = χs − χ and the change of variable formula yields∫
Ω

ϑ(x)χs(x) dx =
∫

Ω

ϑ(Xs(y))Js(y)χ(y) dy.

By the very definition of subdifferential, we have

φ0(us) − φ0(u) −
∫

Ω

ϑ (us − u) dx = φ0(us) − φ0(u) −
〈
ξ, |us − u|

〉
H−1(Ω)

≥ o
(
‖us − u‖H−1(Ω)

)
= o

(
‖χs − χ‖H−1(Ω)

)
= o(s)

(5.59)

where according to Landau’s notation, o(s) denotes a function depending on s such that o(s)/s→ 0 as s→ 0.
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On the other hand, since us − χs = u− χ = ϑ, we have

α

∫
Ω

|Dχs| − α

∫
Ω

|Dχ| = F0(us, χs) − F0(u, χ) ≥ φ0(us) − φ0(u);

dividing (5.59) by s and passing to the limit first as s ↓ 0+ and then as s ↑ 0− we obtain

d
ds

(
α

∫
Ω

|Dχs|
)
s=0

−
∫

Ω

ϑ(x)χs(x) dx
)
s=0

= 0,

which yields (5.51).
Finally, we have to show that (5.51) holds even if ξ belongs to the limiting subdifferential of φ0 at u. In this

case, by Proposition 5.3 and (5.18), we know that there exists a sequence (uk, ϑk, χk)k∈N which satisfies (5.50),
−∆ϑk = ∂φ0(uk), and (5.51), such that

ϑk ⇀ ϑ in H1
0 (Ω), χk → χ in L2(Ω), lim

k→∞
α

∫
Ω

|Dχk| = α

∫
Ω

|Dχ|. (5.60)

Since Dχk ⇀∗ Dχ and |Dχk|(Ω) → |Dχ|(Ω), we can pass to the limit in (5.51) as k → +∞ thanks to the
Reshetnyak theorem [2], Theorem 2.39. �

Quasistationary phase field with Dirichlet/Neumann boundary conditions. Here, we consider the
system (2.31, 2.32) introduced in Example 4, with the boundary conditions

u− χ = 0, A2∇χ · n = 0 in ∂Ω × (0, T ). (5.61)

Again V := H1
0 (Ω), H := L2(Ω), V ′ := H−1(Ω), A is the elliptic operator − div(A1∇·), and F , φ are given

by (2.34) and (2.35), respectively.
In this case, we can apply Theorem 5.7 with the choice W := H1(Ω). Observe that (5.61) is a well-known

interpolation estimate of L2(Ω) between H−1(Ω) and H1(Ω), whereas (5.36) is immediate since the functional F
itself controls the H1(Ω)- norm of χ.

Quasistationary phase field with Neumann boundary conditions. Finally, the existence of the solutions
to the system (2.31, 2.32), coupled with boundary conditions of variational type

A1∇(u− χ) · n = 0, A2∇χ · n = 0 in ∂Ω × (0, T ), (5.62)

for u0 ∈ L2(Ω) and f ∈ L2(Ω × (0, T )), follows directly from Theorem 5.9 with the choice H := L2(Ω),
V := H1(Ω); the operator A is defined for every u, v ∈ H1(Ω) as

(H1(Ω))′〈Au, v〉H1(Ω) :=
∫

Ω

(
A1(x)∇u(x) · ∇v(x)

)
dx. (5.63)

References

[1] L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191–246.
[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical

Monographs, Clarendon Press, Oxford (2000).
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[42] G. Savaré, Compactness properties for families of quasistationary solutions of some evolution equations. Trans. Amer. Math.

Soc. 354 (2002) 3703–3722.
[43] R. Schätzle, The quasistationary phase field equations with Neumann boundary conditions. J. Differential Equations 162

(2000) 473–503.
[44] L. Simon, Lectures on geometric measure theory, in Proc. Centre for Math. Anal., Australian Nat. Univ. 3 (1983).
[45] M. Valadier, Young measures, Methods of nonconvex analysis (Varenna, 1989). Springer, Berlin (1990) 152–188.
[46] A. Visintin, Differential models of hysteresis. Appl. Math. Sci. 111, Springer-Verlag, Berlin (1994).
[47] A. Visintin, Models of phase transitions. Progress in Nonlinear Differential Equations and Their Applications 28, Birkhäuser,
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