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CUT LOCUS AND OPTIMAL SYNTHESIS IN THE SUB-RIEMANNIAN
PROBLEM ON THE GROUP OF MOTIONS OF A PLANE �

Yuri L. Sachkov
1

Abstract. The left-invariant sub-Riemannian problem on the group of motions (rototranslations)
of a plane SE(2) is considered. In the previous works [Moiseev and Sachkov, ESAIM: COCV, DOI:
10.1051/cocv/2009004; Sachkov, ESAIM: COCV, DOI: 10.1051/cocv/2009031], extremal trajectories
were defined, their local and global optimality were studied. In this paper the global structure of
the exponential mapping is described. On this basis an explicit characterization of the cut locus and
Maxwell set is obtained. The optimal synthesis is constructed.
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1. Introduction

This work completes the study of the left-invariant sub-Riemannian problem on the group of motions of a
plane SE(2) = R

2
� SO(2) started in [7,10]. In visual geometric terms, this problem can be stated as follows:

given two unit vectors v0 = (cos θ0, sin θ0), v1 = (cos θ1, sin θ1) attached respectively at two given points (x0, y0),
(x1, y1) in the plane, one should find an optimal motion in the plane that transfers the vector v0 to the vector v1,
see Figure 1. The vector can move forward or backward and rotate simultaneously. The required motion should
be optimal in the sense of minimal length in the space (x, y, θ), where θ is the slope of the moving vector.

The corresponding optimal control problem reads as follows:

ẋ = u1 cos θ, ẏ = u1 sin θ, θ̇ = u2, (1.1)

q = (x, y, θ) ∈M = R
2
x,y × S1

θ , u = (u1, u2) ∈ R
2, (1.2)

q(0) = q0 = (0, 0, 0), q(t1) = q1 = (x1, y1, θ1), (1.3)

l =
∫ t1

0

√
u2

1 + u2
2 dt → min, (1.4)
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q0 = (x0, y0, θ0)
x

y

θ

q1 = (x1, y1, θ1)

Figure 1. Problem statement.

or, equivalently,

J =
1
2

∫ t1

0

(u2
1 + u2

2) dt→ min. (1.5)

This problem has important relations to vision [4,8,9], robotics [6], and diffusion equation on SE(2) [2].
Notice that before this work a global description of the cut locus and optimal synthesis was known for

left-invariant sub-Riemannian problems on the following Lie groups only: the Heisenberg group (Vershik and
Gershkovich [11]), and SO(3), SU(2) ∼= S3, SL(2) (Boscain and Rossi [3]).

First we recall the main results of the previous works [7,10]. In paper [7] the normal Hamiltonian system
of Pontryagin Maximum Principle was written in a triangular form in appropriate coordinates on cotangent
bundle T ∗M , so that its vertical subsystem takes the form of mathematical pendulum:

γ̇ = c, ċ = − sinγ, (γ, c) ∈ C ∼= (2S1
γ) × Rc, (1.6)

ẋ = sin
γ

2
cos θ, ẏ = sin

γ

2
sin θ, θ̇ = − cos

γ

2
· (1.7)

The phase cylinder of pendulum (1.6) decomposes into invariant subsets according to values of the energy
E = c2/2 − cos γ:

C =
5⋃

i=1

Ci,

C1 = {λ ∈ C | E ∈ (−1, 1)}, (1.8)

C2 = {λ ∈ C | E ∈ (1,+∞)}, (1.9)

C3 = {λ ∈ C | E = 1, c �= 0}, (1.10)

C4 = {λ ∈ C | E = −1} = {(γ, c) ∈ C | γ = 2πn, c = 0}, (1.11)

C5 = {λ ∈ C | E = 1, c = 0} = {(γ, c) ∈ C | γ = π + 2πn, c = 0}. (1.12)
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In the subsets C1, C2, C3 elliptic coordinates (ϕ, k) that rectify the flow of the pendulum were introduced: ϕ is
the phase, and k a reparameterized energy of pendulum (1.6):

k =
√

(E + 1)/2 in C1 ∪ C3, k =
√

2/(E + 1) in C2.

The Hamiltonian system (1.6), (1.7) was integrated in Jacobi’s functions [12]. The equation of pendulum (1.6)
has a discrete group of symmetries G = {Id, ε1, . . . , ε7} = Z2 × Z2 × Z2 generated by reflections in the axes of
coordinates γ, c, and translations (γ, c) �→ (γ+2π, c). Reflections εi are symmetries of the exponential mapping

Exp : N = C × R+ →M, Exp(λ, t) = qt.

The main result of work [7] is an upper bound on cut time

tcut = sup{t1 > 0 | qs is optimal for s ∈ [0, t1]}

along extremal trajectories qs. It is based on the fact that a sub-Riemannian geodesic cannot be optimal after
a Maxwell point, i.e., a point where two distinct geodesics of equal sub-Riemannian length meet one another.
A natural idea is to look for Maxwell points corresponding to discrete symmetries of the exponential mapping.
For each extremal trajectory qs = Exp(λ, s), we described Maxwell times tnεi(λ), i = 1, . . . , 7, n = 1, 2, . . . ,
corresponding to discrete symmetries εi. The following upper bound was proved in work [7]:

tcut(λ) ≤ t(λ), λ ∈ C, (1.13)

where t(λ) = min(t1εi(λ)) is the first Maxwell time corresponding to the group of symmetries G. We recall the
explicit definition of the function t(λ) below in equations (2.1)–(2.5).

In work [10], the local optimality of sub-Riemannian geodesics was completely characterized. Extremal
trajectories corresponding to oscillating pendulum (i.e., to λ ∈ C1) do not have conjugate points, thus they are
locally optimal forever. In the case of rotating pendulum (λ ∈ C2) the first conjugate time is bounded from
below and from above by the first Maxwell times t1ε2 and t1ε5 respectively. For critical values of energy of the
pendulum, there are no conjugate points. As a consequence, the following bound was proved in Theorem 2.5 [10]:

t(λ) ≤ tconj
1 (λ), λ ∈ C. (1.14)

Also, in work [10] the global optimality of geodesics was studied. We constructed open dense domains in
preimage and image of exponential mapping and proved that the exponential mapping transform these strata
diffeomorphically. As a consequence, we showed that inequality (1.13) is in fact an equality.

In this work we obtain our further results for problem (1.1)–(1.5). We consider in detail the action of
the exponential mapping at the boundary of the 3-dimensional diffeomorphic domains. This boundary is
decomposed into smooth strata of dimension 2, 1, 0 so that restriction of exponential mapping to these strata is
a diffeomorphism (Sect. 2). These results provide a detailed description of the global structure of the exponential
mapping (Thm. 3.1). The optimal synthesis is constructed in Theorem 3.2.

In Theorems 3.4 and 3.5 we characterize the global structure of the Maxwell set (the set of points q1 connected
by more than one optimal trajectory with the initial point q0), and the cut locus (the set of points where extremal
trajectories lose optimality). For each point of the Maxwell set there are exactly two optimal trajectories. The
cut locus has three connected components Cut+loc, Cut−loc, and Cutglob. The initial point q0 is contained in
the closure of the local components Cut±loc, and is separated from the global component Cutglob. The global
component admits a simple description:

Cutglob = {q = (x, y, θ) ∈M | θ = π},
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while the local components are subsets of the Moebius strip:

Cut±loc ⊂ {q = (x, y, θ) ∈M | x cos(θ/2) + y sin(θ/2) = 0}

defined by some inequalities, see Theorem 3.5. Embedding of the cut locus in the solid torus is shown at
Figure 18.

In Section 4 we present explicit optimal solutions for special boundary conditions.

2. Structure of exponential mapping at the boundary of open strata

We recall some more definitions and notation introduced in the previous works [7,10]. The function t :
C → (0,+∞] on the phase cylinder of pendulum (2S1

γ) × Rc = C = ∪5
i=1Ci that evaluates the cut time along

sub-Riemannian geodesics Exp(λ, t), t ∈ C, is defined as follows:

λ ∈ C1 ⇒ t(λ) = 2K(k), (2.1)

λ ∈ C2 ⇒ t(λ) = 2kp1
1(k), (2.2)

λ ∈ C3 ⇒ t(λ) = +∞, (2.3)

λ ∈ C4 ⇒ t(λ) = π, (2.4)

λ ∈ C5 ⇒ t(λ) = +∞, (2.5)

where p1
1(k) is the first positive root of the equation cn p (E(p) − p) − dn p sn p = 0. Here and below we use

Jacobi’s functions cn, sn, dn, E, and the complete elliptic integral of the first kind K [12]. Further,

M̂ = M \ {q0},
N̂ = {(λ, t) ∈ N | t ≤ t(λ)},
Ni = Ci × R+, i = 1, . . . , 5,

Ñ = {(λ, t) ∈ ∪3
i=1Ni | t < t(λ), sn τ cn τ �= 0},

N ′ = {(λ, t) ∈ ∪3
i=1Ni | t = t(λ) or sn τ cn τ = 0} ∪ N̂4 ∪N5,

N̂4 = N̂ ∩N4,

M̃ = {q ∈M | R1(q)R2(q) sin θ �= 0},
M ′ = {q ∈M | R1(q)R2(q) sin θ = 0},

where

R1 = y cos
θ

2
− x sin

θ

2
, R2 = x cos

θ

2
+ y sin

θ

2
·

Along with the coordinates (k, ϕ, t), we use in the domains N1, N2, N3 also the coordinates (k, p, τ):

(λ, t) ∈ N1 ∪N3 ⇒ τ = (2ϕ+ t)/2, p = t/2,

(λ, t) ∈ N2 ⇒ τ = (2ϕ+ t)/(2k), p = t/(2k).

In work [10] we proved that Exp : Ñ → M̃ is a diffeomorphism, and that Exp(N ′) ⊂M ′. In this section we
describe the action of the exponential mapping

Exp : N ′ = N̂ \ Ñ →M ′ = M̂ \ M̃.
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2.1. Decomposition of the set N ′

Consider the following subsets of the set N ′:

Ncut = {(λ, t) ∈ N | t = t(λ)}, (2.6)

Nconj = {(λ, t) ∈ N2 | t = t(λ), sn τ = 0}, (2.7)

NMax = Ncut \Nconj, Nrest = N ′ \Ncut.

The meaning of the subscripts in Ncut, Nconj, NMax, and Nrest is the following: we will show that Exp(Ncut)
is the cut locus, Exp(NMax) is the first Maxwell set, Exp(Nconj) is the intersection of the cut locus with the
conjugate locus (caustic), and Exp(Nrest) has no special meaning in this problem (so it contains all the rest
strata), see Theorem 3.4. We have the following decompositions:

N̂ = Ñ 
N ′, N ′ = Ncut 
Nrest, Ncut = NMax 
Nconj, (2.8)

here and below we denote by 
 the union of disjoint sets.
In order to study the structure of the exponential mapping at the set N ′, we need a further decomposition

into subsets N ′
i , i = 1, . . . , 58, defined by Table 1.

Images of the projections

N ′
i ∩ {t < t(λ), sn τ cn τ = 0} → {p = 0}, (k, τ, p) �→ (k, τ, 0),

N ′
i ∩ {t = t(λ)} → {p = 0}, (k, τ, p) �→ (k, τ, 0),

are shown respectively in Figures 2 and 3.
Table 1 provides a definition of the sets N ′

i , e.g., the second column of this table means that

N ′
1 = {(λ, t) ∈ N | λ ∈ C0

1 , τ ∈ (0,K), p = K, k ∈ (0, 1)}.

Here we use the following decomposition of the sets Ci into connected components:

C1 = ∪1
i=0C

i
1, Ci

1 = {(γ, c) ∈ C1 | sgn(cos(γ/2)) = (−1)i}, i = 0, 1,

C2 = C+
2 ∪C−

2 , C±
2 = {(γ, c) ∈ C2 | sgn c = ±1},

C3 = ∪1
i=0(C

i+
3 ∪ Ci−

3 ),

Ci±
3 = {(γ, c) ∈ C3 | sgn(cos(γ/2)) = (−1)i, sgn c = ±1}, i = 0, 1,

C4 = ∪1
i=0C

i
4, Ci

4 = {(γ, c) ∈ C | γ = 2πi, c = 0}, i = 0, 1,

C5 = ∪1
i=0C

i
5, Ci

5 = {(γ, c) ∈ C | γ = π + 2πi, c = 0}, i = 0, 1.

Introduce the following index sets for numeration of the subsets N ′
i :

I = {1, . . . , 58}, C = {1, . . . , 34}, J = {26, 28, 30, 32}, (2.9)

R = {35, . . . , 58}, X = C \ J. (2.10)

Notice that I = C 
R, J ⊂ C.

Lemma 2.1.
(1) We have N ′

i ∩N ′
j = ∅ for any distinct i, j ∈ I.
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Table 1. Definition of sets N ′
i .

N ′
i N ′

1 N ′
2 N ′

3 N ′
4 N ′

5 N ′
6 N ′

7 N ′
8

λ C0
1 C0

1 C0
1 C0

1 C1
1 C1

1 C1
1 C1

1

τ (0,K) (K, 2K) (2K, 3K) (3K, 4K) (0,K) (K, 2K) (2K, 3K) (3K, 4K)
p K K K K K K K K

N ′
i N ′

9 N ′
10 N ′

11 N ′
12 N ′

13 N ′
14 N ′

15 N ′
16

λ C+
2 C+

2 C+
2 C+

2 C−
2 C−

2 C−
2 C−

2

τ (3K, 4K) (0,K) (K, 2K) (2K, 3K) (−3K,−2K) (−2K,−K) (−K, 0) (0,K)
p p1

1 p1
1 p1

1 p1
1 p1

1 p1
1 p1

1 p1
1

N ′
i N ′

17 N ′
18 N ′

19 N ′
20 N ′

21 N ′
22 N ′

23 N ′
24 N ′

25 N ′
26 N ′

27 N ′
28 N ′

29 N ′
30

λ C0
1 C0

1 C0
1 C0

1 C1
1 C1

1 C1
1 C1

1 C+
2 C+

2 C+
2 C+

2 C−
2 C−

2

τ 0 K 2K 3K 0 K 2K 3K 3K 0 K 2K K −2K
p K K K K K K K K p1

1 p1
1 p1

1 p1
1 p1

1 p1
1

N ′
i N ′

31 N ′
32 N ′

35 N ′
36 N ′

37 N ′
38 N ′

39 N ′
40 N ′

41 N ′
42

λ C−
2 C−

2 C0
1 C0

1 C0
1 C0

1 C1
1 C1

1 C1
1 C1

1

τ −K 0 0 K 2K 3K 0 K 2K 3K
p p1

1 p1
1 (0,K) (0,K) (0,K) (0,K) (0,K) (0,K) (0,K) (0,K)

N ′
i N ′

47 N ′
48 N ′

49 N ′
50 N ′

51 N ′
52 N ′

53 N ′
54

λ C0+
3 C0−

3 C1+
3 C1−

3 C+
2 C+

2 C+
2 C+

2

τ 0 0 0 0 3K 0 K 2K
p (0,+∞) (0,+∞) (0,+∞) (0,+∞) (0, p1

1) (0, p1
1) (0, p1

1) (0, p1
1)

N ′
i N ′

55 N ′
56 N ′

57 N ′
58

λ C−
2 C−

2 C−
2 C−

2

τ K −2K −K 0
p (0, p1

1) (0, p1
1) (0, p1

1) (0, p1
1)

N ′
i N ′

33 N ′
34 N ′

43 N ′
44 N ′

45 N ′
46

λ C0
4 C1

4 C0
4 C1

4 C0
5 C1

5

t π π (0, π) (0, π) (0,+∞) (0,+∞)

(2) There are the following decompositions of subsets of the set N ′:

Ncut = ∪i∈CN
′
i , Nconj = ∪i∈JN

′
i , Nrest = ∪i∈RN

′
i ,

thus

NMax = ∪i∈XN
′
i , (2.11)

N ′ = 
i∈IN
′
i . (2.12)

Proof. Both statements (1) and (2) follow directly from Table 1, definitions of the sets N ′, NMax, Ncut, Nconj,
Nrest, and decompositions (2.8). �
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N35

N38 N36

N37

N52N51

N55 N58

N44

N39

N43 N42 N40

N41

N54N53

N57 N56

N47

N48 N50

N49

N45N46 γ

c

Figure 2. N ′
i ∩ {t < t(λ), sn τ cn τ = 0}.

N1N17N4

N33N20 N18

N2N3 N19

N26 N10N9N25

N29 N16 N15N32

N34

N1N17 N5N21N8

N33 N24 N22

N6N7 N23

N28 N12N11N27

N31 N14 N13N30

γ

c

Figure 3. N ′
i ∩ {t = t(λ)}.

2.2. Exponential mapping of the sets N ′
35, N ′

47, N ′
26, N ′

52

2.2.1. Exponential mapping of the set N ′
35

In order to describe the image Exp(N ′
35), we will need the following function:

R2
1(θ) = 2(artanh(sin(θ/2)) − sin(θ/2)), θ ∈ [0, π). (2.13)
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0

π

θ

R1

Figure 4. Plot of R1 = R2
1(θ).

0

π

2

p

k

n2

n1

n3

n4

1

N35

Figure 5. Domain N ′
35.

π

2π
θ

R1

m2

m1

m4

m3

M35

Figure 6. Domain M ′
35.

It is obvious that R2
1 ∈ C∞[0, π), R2

1(0) = 0, R2
1(θ) > 0 for θ ∈ (0, π), limθ→π−0R

2
1(θ) = +∞, and

dR2
1

d θ
(0) = 0. (2.14)

A plot of the function R2
1(θ) is given at Figure 4.

Define the following subset of the set M ′, see Figures 6 and 14:

M ′
35 = {q ∈M | θ ∈ (π, 2π), R1 ∈ (0, R2

1(2π − θ)), R2 = 0}.

Lemma 2.2. The mapping Exp : N ′
35 →M ′

35 is a diffeomorphism of 2-dimensional manifolds.

To be more precise, we state that Exp(N ′
35) = M ′

35 and Exp|N ′
35

is a diffeomorphism of the manifold N ′
35

onto the manifold M ′
35. Below we will write such statements briefly as in Lemma 2.2.

Proof. Formulas (5.2)–(5.6) [7] imply that in the domain N ′
35 we have the following:

sin(θ/2) = sn p , cos(θ/2) = − cn p , (2.15)

R1 = 2(p− E(p))/k, R2 = 0. (2.16)



SUB-RIEMANNIAN PROBLEM ON SE(2) 301

By Theorem 2.5 [10] (see (1.14)), the restriction Exp|N ′
35

is nondegenerate. Thus the set Exp(N ′
35) is an open

connected domain in the 2-dimensional manifold

S = {q ∈M | θ ∈ (π, 2π), R1 > 0, R2 = 0}.

On the other hand, the set N ′
35 is an open connected simply connected domain in the 2-dimensional manifold

T = {ν = (λ, t) ∈ N1 | τ = 0, p ∈ (0,K), k ∈ (0, 1)}.

In the topology of T , we have

∂N ′
35 = ∪4

i=1ni,

n1 = {ν ∈ N1 | τ = 0, p = 0, k ∈ [0, 1]},
n2 = {ν ∈ N1 | τ = 0, p ∈ [0, π/2], k = 0},
n3 = {ν ∈ N1 | τ = 0, p = K(k), k ∈ [0, 1)},
n4 = {ν ∈ N1 | τ = 0, p ∈ [0,+∞), k = 1]},

see Figure 5.
It follows from formulas (2.15) and (2.16) that

Exp(n1) = m1 = {q ∈M | θ = 2π, R1 = 0, R2 = 0},
Exp(n2) = m2 = {q ∈M | θ ∈ [π, 2π], R1 = 0, R2 = 0},
Exp(n3) = m3 = {q ∈M | θ = π, R1 > 0, R2 = 0},
Exp(n4) = m4 = {q ∈M | θ ∈ [π, 2π], R1 = R2

1(2π − θ), R2 = 0},

moreover, ∂M ′
35 = ∪4

i=1mi, see Figure 6.
Now we show that Exp(N ′

35) ⊂M ′
35 and Exp : N ′

35 →M ′
35 is a diffeomorphism.

(a) We show that Exp(N ′
35)∩M ′

35 �= ∅. Formulas (2.15) and (2.16) give the following asymptotics as k → 0:

θ = 2π − 2p+ o(1), R1 = k(p/2 − (sin 2p)/4) + o(k).

There exists (p, k) close to (π/2, 0) such that the corresponding point (θ,R1) is arbitrarily close to (0, 0), with
θ > 0, R1 > 0. Thus there exists ν ∈ N ′

35 such that Exp(ν) ∈M ′
35.

(b) We show that Exp(N ′
35) �= S. Formulas (2.15) and (2.16) yield the following chain:

θ → 2π − 0 ⇒ sn p → 0 ⇒ p→ 0 ⇒ R1 → 0.

Thus there exists q ∈ S \ Exp(N ′
35).

(c) We prove that Exp(N ′
35) ⊂M ′

35. By contradiction, suppose that there exists a point q1 ∈ Exp(N ′
35)\M ′

35.
Since the mapping Exp|N ′

35
is nondegenerate, we can choose this point such that q1 ∈ Exp(N ′

35) \ cl(M ′
35).

Choose any point q2 ∈ S \ cl(M ′
35). Connect the points q1, q2 by a continuous curve in S, and find at

this curve a point q3 ∈ S \ Exp(N ′
35), q3 /∈ cl(M ′

35) such that there exists a converging sequence qn → q3,
qn = Exp(νn) ∈ Exp(N ′

35). Further, there exist a subsequence νni ∈ N ′
35 converging to a finite or infinite

limit. If νni → ν̄ ∈ N ′
35, then q3 = Exp(ν̄) ∈ int Exp(N ′

35) by nondegeneracy of Exp|N ′
35

, a contradiction. If
νni → ν̄ ∈ ∂N ′

35, then
q3 = Exp(ν̄) ∈ Exp(∂N ′

35) = ∂M ′
35 ⊂ cl(M ′

35),



302 YU.L. SACHKOV

a contradiction. Finally, if νni → ∞, then at this sequence kni → 1 − 0, pni → ∞, thus R1(qni) → ∞,
a contradiction.

Consequently, Exp(N ′
35) ⊂M ′

35.

(d) The mapping Exp : N ′
35 → M ′

35 is a diffeomorphism since Exp|N ′
35

is nondegenerate and proper, and
N ′

35, M
′
35 are connected and simply connected. �

2.2.2. Exponential mapping of the set N ′
47

Define the following subset of M ′, see Figure 14:

M ′
47 = {q ∈M | θ ∈ (π, 2π), R1 = R2

1(2π − θ), R2 = 0}.

Lemma 2.3. The mapping Exp : N ′
47 →M ′

47 is a diffeomorphism of 1-dimensional manifolds.

Proof. We pass to the limit k → 1 − 0 in formulas (2.15) and (2.16) and obtain for ν ∈ N ′
47:

sin(θ/2) = tanh p, cos(θ/2) = −1/ coshp, R1 = 2(p− tanh p), R2 = 0.

This coordinate representation shows that Exp : N ′
47 →M ′

47 is a diffeomorphism. �

2.2.3. Exponential mapping of the set N ′
26

Before the study of Exp|N ′
52

, postponed till the next subsection, we need to consider the set N ′
26 contained

in the boundary of N ′
52. In order to parameterize regularly the image Exp(N ′

26), we introduce the necessary
functions.

Recall that the function p = p1
1(k), k ∈ [0, 1), is the first positive root of the function f1(p) = cn p (E(p)−p)−

dn p sn p , see equation (5.12) and Corollary 5.1 [7]. Define the function

v1
1(k) = am(p1

1(k), k), k ∈ [0, 1). (2.17)

Lemma 2.4.
(1) The number v = v1

1(k) is the first positive root of the function

h1(v, k) = E(v, k) − F (v, k) −
√

1 − k2 sin2 v tan v, k ∈ [0, 1).

(2) v1
1 ∈ C∞[0, 1).

(3) v1
1(k) ∈ (π/2, π) for k ∈ (0, 1); moreover, v1

1(0) = π.
(4) The function v1

1(k) is strictly decreasing at the segment k ∈ [0, 1).
(5) limv→1−0 v

1
1(k) = π/2, thus setting v1

1(1) = π/2, we obtain v1
1 ∈ C[0, 1].

(6) v1
1(k) = π − (π/2)k2 + o(k2), k → +0.

Proof. (1) follows from (2.17) since p = p1
1 is the first positive root of the function f1(p).

(2) follows since p1
1 ∈ C∞[0, 1) by Lemma 5.3 [7].

(3) follows since p1
1 ∈ (K, 2K) and p1

1(0) = π, see Corollary 5.1 [7].
(4) We have for v ∈ (π/2, π]:

∂ h1

∂ v
= −

√
1 − k2 sin2 v/ cos2 v < 0,

∂ h1

∂ k
= − k

1 − k2
(E(v, k) −

√
1 − k2 sin2 v tan v) < 0.

Thus
d v1

1

d k
= −∂h1/∂k

∂h1/∂v
< 0 for k ∈ [0, 1).
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Figure 7. Plot of v = v1
1(k).
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Figure 8. The curve Γ1.

(5) Monotonicity and boundedness of v1
1(k) imply that there exists a limit limk→1−0 v

1
1(k) = v̄ ∈ [π/2, π). If

v̄ ∈ (π/2, π), then as k → 1 − 0

h1(v1
1(k), k) →

∫ v̄

0

(| cos t| − 1/| cos t|) dt−
√

1 − sin2 v̄ tan v̄ = ∞,

which contradicts the identity h1(v1
1(k), k) ≡ 0, k ∈ [0, 1). Thus v̄ = π/2.

(6) As (k, v) → (0, π), we have h1(v, k) = v−π+(π/2)k2 +o(k2 +(v−π)2), thus v1
1(k) = π− (π/2)k2 +o(k2),

k → +0. �
A plot of the function v1

1(k) is given in Figure 7.
Define the curve Γ1 ⊂ S = {q ∈M | θ ∈ (0, π), R1 > 0, R2 = 0} given parametrically as follows:

θ = 2 arcsin(k sin v1
1(k)), (2.18)

R1 = 2(F (v1
1(k), k) − E(v1

1(k), k)), k ∈ [0, 1), (2.19)

see Figure 8.

Lemma 2.5.
(1) The function k sin v1

1(k) is strictly increasing as k ∈ [0, 1], thus the function θ = θ(k), k ∈ [0, 1],
determined by (2.18) has an inverse function k = k1

1(θ), θ ∈ [0, π].
(2) k1

1 ∈ C[0, π] ∩ C∞[0, π).
(3) The function k1

1(θ) is strictly increasing as θ ∈ [0, π].
(4) The curve Γ1 is a graph of the function

R1 = R1
1(θ), θ ∈ [0, π],

R1
1(θ) = 2(F (v1

1(k), k) − E(v1
1(k), k)), k = k1

1(θ). (2.20)

(5) R1
1 ∈ C[0, π] ∩C∞(0, π).

(6) R1
1(θ) = 3

√
π/2 θ2/3 + o(θ2/3), θ → +0.

Proof. (1) As k ∈ [0, 1], we have:

v1
1(k) ↓, v1

1(k) ∈ [π/2, π],

sin v1
1(k) ↑, k sin v1

1(k) ↑, 2 arcsin(kv1
1(k)) ↑ .
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(2) follows from items (2) and (5) of Lemma 2.4.
(3) follows from item (1) of this lemma.
(4) follows from (2.18) and (2.19).
(5) follows from item (2) of this lemma.
(6) As k → +0, we have

v1
1(k) = π − (π/2)k2 + o(k2), sin v1

1(k) = (π/2)k2 + o(k2),

and for the functions (2.18), (2.19)

θ = πk3 + o(k3), R1 = (π/2)k2 + o(k2).

Thus as θ → +0, we have

k1
1(θ) = 3

√
θ/π + o( 3

√
θ), R1

1(θ) = 3
√
π/2 θ2/3 + o(θ2/3). �

Define the following subset of M ′, see Figure 14:

M ′
26 = {q ∈M | θ ∈ (π, 2π), R1 = R1

1(2π − θ), R2 = 0}.

Lemma 2.6. The mapping Exp : N ′
26 →M ′

26 is a diffeomorphism of 1-dimensional manifolds.

Proof. For ν ∈ N ′
26 we obtain from formulas (5.7)–(5.12) [7]:

sin(θ/2) = k sn p1
1(k) = k sin v1

1(k),

cos(θ/2) = − dn p1
1(k) = −

√
1 − k2 sin2 v1

1(k),

R1 = 2(p1
1(k) − E(p1

1(k))) = 2(F (v1
1(k), k) − E(v1

1(k), k)),
R2 = 0.

Thus Exp(N ′
26) = M ′

26. Moreover, the mapping Exp : N ′
26 → M ′

26 decomposes into the chain

N ′
26

(∗)→ Γ1
(∗∗)→ M ′

26,

(∗) : k �→ (θ = 2 arcsin(k sin v1
1(k)), R1 = 2(F (v1

1(k), k) − E(v1
1(k), k)), R2 = 0),

(∗∗) : (θ,R1, R2) �→ (2π − θ,R1, R2).

The mapping (∗) is a diffeomorphism by Lemma 2.5. Thus Exp : N ′
26 →M ′

26 is a diffeomorphism. �

2.2.4. Exponential mapping of the set N ′
52

Lemma 2.7.
(1) The functions R1

1(θ), R2
1(θ) defined in (2.20) and (2.13) satisfy the inequality

R2
1(θ) < R1

1(θ), θ ∈ (0, π).

(2) The mapping Exp : N ′
52 →M ′

52 is a diffeomorphism of 2-dimensional manifolds, where

M ′
52 = {q ∈M | θ ∈ (π, 2π), R1 ∈ (R2

1(2π − θ), R1
1(2π − θ)), R2 = 0},

see Figure 14.
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Figure 9. Domain N ′
52.
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Figure 10. Curves γ2 and Γ2.

Proof. We have
N ′

52 = {ν ∈ N+
2 | τ = 0, v ∈ (0, v1

1(k)), k ∈ (0, 1)},
where v = am(p, k). Thus

N ′
52 ⊂ T = {ν ∈ N+

2 | τ = 0, v ∈ [0, π], k ∈ [0, 1]},

and in the 2-dimensional topology of T

∂N ′
52 = ∪4

i=1ni,

n1 = {ν ∈ N+
2 | τ = 0, v = 0, k ∈ [0, 1]},

n2 = {ν ∈ N+
2 | τ = 0, v ∈ [0, π], k = 0},

n3 = {ν ∈ N+
2 | τ = 0, v = v1

1(k), k ∈ [0, 1]},
n4 = {ν ∈ N+

2 | τ = 0, v ∈ [0, π/2], k = 1},

see Figure 9.
By formulas (5.7)–(5.12) [7], the exponential mapping in the domain N ′

52 reads as follows:

sin(θ/2) = k sin v, cos(θ/2) = −
√

1 − k2 sin2 v,

R1 = 2(F (v, k) − E(v, k)), R2 = 0.

Thus

Exp(N ′
52) ⊂ S = {q ∈M | θ ∈ (π, 2π), R1 > 0, R2 = 0},

Exp(n1) = Exp(n2) = P0 = {q ∈M | θ = 2π, R1 = 0, R2 = 0},
Exp(n3) = M ′

26 = Γ2, Γ2 := M ′
26,

Exp(n4) = M ′
47 = γ2, γ2 := M ′

47.

By Theorem 2.5 [10] (see (1.14)), the mapping Exp|N ′
52

is nondegenerate, thus Exp(N ′
52) is an open connected

domain in S, with ∂ Exp(N ′
52) ⊂ Exp(∂N ′

52) = Γ2 ∪ γ2.
The curves Γ2 and γ2 intersect one another at the point P0. We show that they have no other intersection

points. By contradiction, assume that the curves Γ2 and γ2 have intersection points distinct from P0, then the
domain Exp(N ′

52) is bounded by finite arcs of the curves Γ2 and γ2, i.e., there exists a point P1 ∈ γ2 ∩ Γ2,
P1 �= P0, such that ∂ Exp(N ′

52) = P0γ2P1 ∪ P0Γ2P1. Then Exp(N ′
52) does not contain the curves γ2, Γ2.
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Figure 11. Decomposition
of surface {θ = 0}.
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Figure 12. Decomposition
of surface {θ = π}.

This is a contradiction to the diffeomorphic property of the mapping Exp : n3 = N ′
26 → Γ2 = M ′

26 and
Exp : n4 = N ′

47 → γ2 = M ′
47, see Lemmas 2.6 and 2.3 respectively.

Consequently, γ2 ∩ Γ2 = P0, and the domain Exp(N ′
52) is bounded by the curves γ2, Γ2.

The equalities
dR1

1

d θ
(0) = +∞,

dR2
1

d θ
(0) = 0 (see Lem. 2.5 and Eq. (2.14)) imply that R2

1(θ) < R1
1(θ) for

sufficiently small θ > 0. Further, the representations

Γ2 = M ′
26 = {q ∈M | θ ∈ (π, 2π), R1 = R1

1(2π − θ), R2 = 0},
γ2 = M ′

47 = {q ∈M | θ ∈ (π, 2π), R1 = R2
1(2π − θ), R2 = 0}

imply the required inequality
R2

1(θ) < R1
1(θ), θ ∈ (0, π),

and the equality Exp(N ′
52) = M ′

52.
Since the mapping Exp : N ′

52 → M ′
52 is nondegenerate and proper, and the domains N ′

52, M
′
52 are open,

connected, and simply connected, it follows that this mapping is a diffeomorphism. �

The mutual disposition of the curves γ2 = M ′
47 and Γ2 = M ′

26 is shown in Figures 10 and 14.

2.3. Decomposition of the set M ′

Now we have the functions R2
1(θ) < R1

1(θ) required for definition of the following decomposition:

M ′ = ∪58
i=1M

′
i , (2.21)

where the subsets M ′
i are defined by Table 2. Notice that some of the sets M ′

i coincide between themselves,
unlike the sets N ′

i , see (2.12). A precise definition of coinciding M ′
i is given below in Theorem 3.1, item (1).

The structure of decomposition (2.21) in the surfaces {θ = 0}, {θ = π}, {R1 = 0}, {R2 = 0} is shown
respectively in Figures 11, 12, 13 and 14.

2.4. Exponential mapping of the sets N ′
36, N ′

53, N ′
18, N ′

33, N ′
34, N ′

17, N ′
27, N ′

1, N ′
10

2.4.1. Exponential mapping of the set N ′
36

Lemma 2.8. The mapping Exp : N ′
36 →M ′

36 is a diffeomorphism of 2-dimensional manifolds.
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Figure 13. Decomposition of surface {R1 = 0}.
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Figure 14. Decomposition of surface {R2 = 0}.

Proof. By formulas (5.2)–(5.6) [7], exponential mapping in the domain N ′
36 reads as follows:

sin(θ/2) =
√

1 − k2 sn p / dn p , cos(θ/2) = − cn p / dn p ,

R1 = 0, R2 = −2f2(p, k)/(k dn p ),

where f2(p, k) = k2 cn p sn p + dn p (p− E(p)) > 0 by Lemma 5.2 [7], thus Exp(N ′
36) ⊂M ′

36.
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Table 2. Definition of sets M ′
i .

M ′
i M ′

1 = M ′
6 M ′

2 = M ′
5 M ′

3 = M ′
8 M ′

4 = M ′
7 M ′

9 = M ′
10 M ′

11 = M ′
12

θ π π π π (π, 2π) (0, π)
R1 (0,+∞) (−∞, 0) (−∞, 0) (0,+∞) (R1

1(2π − θ),+∞) (−∞,−R1
1(θ))

R2 (−∞, 0) (−∞, 0) (0,+∞) (0,+∞) 0 0

M ′
i M ′

13 = M ′
14 M ′

15 = M ′
16 M ′

17 = M ′
23 M ′

18 = M ′
22 M ′

19 = M ′
21

θ (0, π) (π, 2π) π π π
R1 (R1

1(θ),+∞) (−∞,−R1
1(2π − θ)) (0,+∞) 0 (−∞, 0)

R2 0 0 0 (−∞, 0) 0

M ′
i M ′

20 = M ′
24 M ′

25 = M ′
27 M ′

26 M ′
28 M ′

29 = M ′
31 M ′

30 M ′
32

θ π 0 (π, 2π) (0, π) 0 (0, π) (π, 2π)
R1 0 (−∞, 0) R1

1(2π − θ) −R1
1(θ) (0,+∞) R1

1(θ) −R1
1(2π − θ)

R2 (0,+∞) 0 0 0 0 0 0

M ′
i M ′

33 = M ′
34 M ′

35 M ′
36 M ′

37 M ′
38 M ′

39

θ π (π, 2π) (π, 2π) (π, 2π) (π, 2π) (0, π)
R1 0 (0, R2

1(2π − θ)) 0 (−R2
1(2π − θ), 0) 0 (−R2

1(θ), 0)
R2 0 0 (−∞, 0) 0 (0,+∞) 0

M ′
i M ′

40 M ′
41 M ′

42 M ′
43 M ′

44 M ′
45 M ′

46 M ′
47

θ (0, π) (0, π) (0, π) (π, 2π) (0, π) 0 0 (π, 2π)
R1 0 (0, R2

1(θ)) 0 0 0 0 0 R2
1(2π − θ)

R2 (−∞, 0) 0 (0,+∞) 0 0 (0,+∞) (−∞, 0) 0

M ′
i M ′

48 M ′
49 M ′

50 M ′
51 M ′

52 M ′
53

θ (π, 2π) (0, π) (0, π) 0 (π, 2π) 0
R1 −R2

1(2π − θ) −R1
1(θ) R2

1(θ) (−∞, 0) (R2
1(2π − θ), R1

1(2π − θ)) (−∞, 0)
R2 0 0 0 (−∞, 0) 0 (0,+∞)

M ′
i M ′

54 M ′
55 M ′

56 M ′
57 M ′

58

θ (0, π) 0 (0, π) 0 (π, 2π)
R1 (−R1

1(θ),−R2
1(θ)) (0,+∞) (R2

1(θ), R
1
1(θ)) (0,+∞) (−R1

1(2π − θ),−R2
1(2π − θ))

R2 0 (−∞, 0) 0 (0,+∞) 0

In the topology of the manifold {R1 = 0}, we have:

∂N ′
36 = ∪4

i=1ni,

n1 = {ν ∈ N0
1 | τ = K, p = 0, k ∈ [0, 1]},

n2 = {ν ∈ N0
1 | τ = K, p ∈ [0, π/2], k = 0},

n3 = {ν ∈ N0
1 | τ = K, p = K, k ∈ [0, 1)},

n4 = {ν ∈ N0
1 | τ = K, p ∈ [0,+∞), k = 1},

see Figure 15.
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Figure 15. Domain N ′
36.
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Figure 16. Domain M ′
36.

Further, we have Exp(ni) = mi, i = 1, . . . , 4, where

m1 = {q ∈M | θ = 2π, R1 = 0, R2 = 0},
m2 = {q ∈M | θ ∈ [π, 2π], R1 = 0, R2 = 0},
m3 = {q ∈M | θ = π, R1 = 0, R2 ∈ (−∞, 0]},
m4 = {q ∈M | θ = 2π, R1 = 0, R2 ∈ (−∞, 0]},

see Figure 16.
The mapping Exp : N ′

36 → M ′
36 is nondegenerate and proper, the domains N ′

36, M
′
36 are open (in the

2-dimensional topology), connected and simply connected, thus it is a diffeomorphism. �
2.4.2. Exponential mapping of the set N ′

53

Lemma 2.9. The mapping Exp : N ′
53 →M ′

53 is a diffeomorphism of 2-dimensional manifolds.

Proof. The argument follows similarly to the proof of Lemma 2.8 via the following coordinate representation of
the exponential mapping in the domain N ′

53:

θ = 0, R1 = −2
√

1 − k2(p− E(p))/ dn p < 0, R2 = −2kf1(p, k)/ dn p ,

where f1(p, k) = cn p (E(p) − p) − dn p sn p < 0 for p ∈ (0, p1
1), see Corollary 5.1 [7]. �

2.4.3. Exponential mapping of the set N ′
18

Lemma 2.10. The mapping Exp : N ′
18 →M ′

18 is a diffeomorphism of 1-dimensional manifolds.

Proof. By formulas (5.2)–(5.6) [7], we have in the set N ′
18:

θ = π, R1 = 0, R2 = −(2/k)(K(k) − E(k)),

and the diffeomorphic property of Exp|N ′
18

follows as usual from its nondegeneracy and properness, and topo-
logical properties of the sets N ′

18, M
′
18. �

2.4.4. Exponential mapping of the sets N ′
33, N

′
34

Lemma 2.11. The mappings Exp : N ′
33 → M ′

33 and Exp : N ′
34 → M ′

34 are diffeomorphisms (bijections) of
0-dimensional manifolds.

Proof. Obvious. �
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2.4.5. Exponential mapping of the set N ′
17

Lemma 2.12. The mapping Exp : N ′
17 →M ′

17 is a diffeomorphism of 1-dimensional manifolds.

Proof. The statement follows as in the proof of Lemma 2.10 via the following coordinate representation of the
exponential mapping in the domain N ′

17:

θ = π, R1 = (2/k)(K(k) − E(k)), R2 = 0. �

2.4.6. Exponential mapping of the set N ′
27

Lemma 2.13. The mapping Exp : N ′
27 →M ′

27 is a diffeomorphism of 2-dimensional manifolds.

Proof. Formulas (5.7)–(5.12) [7] yield:

θ = π, R1 = −2
√

1 − k2 (p− E(p))/ dn p |p=p1
1(k) , R2 = 0.

Since τ = K, then Lemma 2.4 [10] implies that the mapping Exp|N ′
27

is nondegenerate. Then the diffeomorphic
property of Exp : N ′

27 →M ′
27 follows as usual. �

2.4.7. Exponential mapping of the set N ′
1

Lemma 2.14. The mapping Exp : N ′
1 →M ′

1 is a diffeomorphism of 2-dimensional manifolds.

Proof. Formulas (5.2)–(5.6) [7] yield:

θ = π, R1 = 2(K(k) − E(k)) cn τ /(k dn τ ) > 0,

R2 = −2
√

1 − k2(K(k) − E(k)) sn τ /(k dn τ ) < 0,

and the statement follows as usual since the mapping Exp|N ′
1

is nondegenerate and proper. �

2.4.8. Exponential mapping of the set N ′
10

Lemma 2.15. The mapping Exp : N ′
10 →M ′

10 is a diffeomorphism of 2-dimensional manifolds.

Proof. By formulas (5.7)–(5.12) [7] we get:

sin(θ/2) = k sn p1
1 cn τ /

√
Δ > 0, cos(θ/2) = − dn p1

1/
√

Δ < 0,

R1 = 2(p− E(p)) dn τ /
√

Δ
∣∣∣
p=p1

1

> 0, R2 = 0,

where Δ = 1− k2 sn2 p sn2 τ , and the statement follows by standard argument since Exp|N ′
10

is nondegenerate
and proper. �

2.5. Action of the group of reflections in the preimage
and image of the exponential mapping

In order to extend the results of the preceding subsections to all 58 pairs (N ′
i ,M

′
i), i ∈ I, we describe the

action of the group of reflections G = {Id, ε1, . . . , ε7} on these sets.

Theorem 2.1. Tables 3, 4, 5, 9 and 6, 7, 8, 10 define diffeomorphisms between the corresponding manifolds N ′
i

and M ′
i .

Proof. Follows from definitions of the manifolds N ′
i and M ′

i (Sects. 2.1 and 2.3) and Propositions 4.3 and 4.4 [7]
describing action of the reflections εi ∈ G in the image and preimage of the exponential mapping. Moreover, in
the coordinates (θ,R1, R2) action of the reflections is described by Table 11. �
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Table 3. Action of ε1, ε4, ε5 on N ′
35, N

′
47, N

′
52, N

′
17, N

′
26.

D N ′
35 N ′

47 N ′
52 N ′

17 N ′
26

ε1(D) N ′
37 N ′

48 N ′
58 N ′

19 N ′
32

ε4(D) N ′
39 N ′

49 N ′
54 N ′

21 N ′
28

ε5(D) N ′
41 N ′

50 N ′
56 N ′

23 N ′
30

Table 4. Action of ε2, ε4, ε6 on
N ′

36, N
′
18.

D N ′
36 N ′

18

ε2(D) N ′
38 N ′

20

ε4(D) N ′
40 N ′

22

ε6(D) N ′
42 N ′

24

Table 5. Action of ε1, ε2, ε3 on
N ′

53, N
′
27.

D N ′
53 N ′

27

ε1(D) N ′
57 N ′

31

ε2(D) N ′
51 N ′

25

ε3(D) N ′
55 N ′

29

Table 6. Action of ε1, ε4, ε5 on M ′
35, M

′
47, M

′
52, M

′
17, M

′
26.

D M ′
35 M ′

47 M ′
52 M ′

17 M ′
26

ε1(D) M ′
37 M ′

48 M ′
58 M ′

19 M ′
32

ε4(D) M ′
39 M ′

49 M ′
54 M ′

21 M ′
28

ε5(D) M ′
41 M ′

50 M ′
56 M ′

23 M ′
30

Table 7. Action of ε2, ε4, ε6 on
M ′

36, M
′
18.

D M ′
36 M ′

18

ε2(D) M ′
38 M ′

20

ε4(D) M ′
40 M ′

22

ε6(D) M ′
42 M ′

24

Table 8. Action of ε1, ε2, ε3 on
M ′

53, M
′
27.

D M ′
53 M ′

27

ε1(D) M ′
57 M ′

31

ε2(D) M ′
51 M ′

25

ε3(D) M ′
55 M ′

29

2.6. The final result for exponential mapping of the sets N ′
i

Theorem 2.2. For any i ∈ I, the mapping Exp : N ′
i → M ′

i is a diffeomorphism of manifolds of appropriate
dimension 2, 1, or 0.

Proof. For i ∈ {35, 47, 26, 52, 36, 53, 18, 17, 27, 1, 10} the statement follows from Lemmas 2.2, 2.3, 2.6, 2.7, 2.8,
2.9, 2.10, 2.12, 2.13, 2.14 and 2.15 respectively.

For i ∈ {33, 34} the statement was proved in Lemma 2.11.
For all the rest i the statement follows from the above lemmas and Theorem 2.1 since the reflections εi ∈ G

are symmetries of the exponential mapping, see Proposition 4.5 [7]. �

2.7. Reflections εk as permutations

In addition to the index sets I, C, J , R, X introduced in (2.9) and (2.10), we will need also the set

T = {(i, j) ∈ I × I | i < j, M ′
i = M ′

j}.
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Table 9. Action of ε1, . . . , ε7 on
N ′

1, N ′
10.

D N ′
1 N ′

10

ε1(D) N ′
2 N ′

15

ε2(D) N ′
4 N ′

9

ε3(D) N ′
3 N ′

16

ε4(D) N ′
5 N ′

12

ε5(D) N ′
6 N ′

13

ε6(D) N ′
8 N ′

11

ε7(D) N ′
7 N ′

14

Table 10. Action of ε1, . . . , ε7 on
M ′

1, M ′
10.

D M ′
1 M ′

10

ε1(D) M ′
2 M ′

15

ε2(D) M ′
4 M ′

9

ε3(D) M ′
3 M ′

16

ε4(D) M ′
5 M ′

12

ε5(D) M ′
6 M ′

13

ε6(D) M ′
8 M ′

11

ε7(D) M ′
7 M ′

14

Table 11. Action of ε1, . . . , ε7 on M = {(R1, R2, θ)}.

ε1 ε2 ε3 ε4 ε5 ε6 ε7

R1 −R1 R1 −R1 −R1 R1 −R1 R1

R2 R2 −R2 −R2 R2 R2 −R2 −R2

θ θ θ θ 2π − θ 2π − θ 2π − θ 2π − θ

Table 12. Multiplication table in the group G.

ε1 ε2 ε3 ε4 ε5 ε6 ε7

ε1 Id ε3 ε2 ε5 ε4 ε7 ε6

ε2 Id ε1 ε6 ε7 ε4 ε5

ε3 Id ε7 ε6 ε5 ε4

ε4 Id ε1 ε2 ε3

ε5 Id ε3 ε2

ε6 Id ε1

ε7 Id

From the definition of the sets M ′
i in Section 2.3 we obtain the explicit representation:

T = {(1, 6), (2, 5), (3, 8), (4, 7), (9, 10), (11, 12), (13, 14), (15, 16),

(17, 23), (18, 22), (19, 21), (20, 24), (25, 27), (29, 31), (33, 34)}.

Notice that X = {i ∈ I | ∃j ∈ I : (i, j) ∈ T or (j, i) ∈ T }.
Now we show that reflections εk ∈ G permute elements in any pair (i, j) ∈ T .
We will need multiplication Table 12 in the group G, which follows from definitions of the reflections εk

(Sect. 4 [7]). The lower diagonal entries of the table are not filled since G is Abelian.

Lemma 2.16. For any (i, j) ∈ T there exists a reflection εk ∈ G such that the following diagram is commutative:

N ′
i

Exp ��

εk

��

M ′
i

Id

��
N ′

j
Exp �� M ′

j

(λ, t) � Exp ��
�

εk

��

qt�

Id

��
(λk, t) �Exp �� qt
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Proof. From definitions of the sets N ′
i (Sect. 2.1) and the reflections εk (Sect. 4 [7]), Tables 3, 4, 5, 9, 12 and

Proposition 4.5 [7], we obtain the following indices k of required symmetries εk for pairs (i, j) ∈ T :

(i, j) ∈ {(1, 6), (2, 5), (3, 8), (4, 7), (17, 23), (19, 21)} ⇒ k = 5,

(i, j) ∈ {(9, 10), (15, 16), (11, 12), (13, 14), (25, 27), (29, 31)} ⇒ k = 2,

(i, j) ∈ {(33, 34), (18, 22), (20, 24)} ⇒ k = 4. �

3. Solution to optimal control problem

In this section we present the final results of this study of the sub-Riemannian problem on SE(2).

3.1. Global structure of the exponential mapping

We say that a mapping F : X → Y is double if any point y ∈ Y has exactly two preimages:

∀ y ∈ Y F−1(y) = {x1, x2}, x1 �= x2.

Theorem 3.1.

(1) There is the following decomposition of preimage of the exponential mapping Exp : N̂ → M̂ :

N̂ = Ñ 
N ′,

Ñ = 
8
i=1Di,

N ′ = NMax 
Nconj 
Nrest,

NMax = 
i∈XN
′
i ,

Nconj = 
i∈JN
′
i ,

Nrest = 
i∈RN
′
i ,

and in the image of the exponential mapping:

M̂ = M̃ 
M ′,

M̃ = 
8
i=1Mi,

M ′ = MMax 
Mconj 
Mrest,

MMax = ∪i∈XM
′
i ,

M ′
i ∩M ′

j �= ∅, i < j ⇒ (i, j) ∈ T, {i, j} ⊂ X,

(i, j) ∈ T ⇒ M ′
i = M ′

j,

Mconj = 
i∈JM
′
i ,

Mrest = 
i∈RM
′
i .

(2) In terms of these decompositions the exponential mapping Exp : N̂ → M̂ has the following structure:

Exp : Di →Mi is a diffeomorphism ∀ i = 1, . . . , 8, (3.1)

Exp : N ′
i →M ′

i is a diffeomorphism ∀ i ∈ I. (3.2)
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Thus

Exp : Ñ → M̃ is a bijection, (3.3)

Exp : NMax →MMax is a double mapping, (3.4)

Exp : Nconj →Mconj is a bijection, (3.5)

Exp : Nrest →Mrest is a bijection. (3.6)

(3) Any point q ∈ M̃ (q ∈ Mconj, q ∈ Mrest) has a unique preimage ν = Exp−1(q) for the mapping
Exp|N̂ : N̂ → M̂ . Moreover, ν ∈ Ñ (resp., ν ∈ Nconj, ν ∈ Nrest).

(4) Any point q ∈MMax has exactly two preimages {ν′, ν′′} = Exp−1(q) for the mapping Exp|N̂ : N̂ → M̂ .
Moreover, ν′, ν′′ ∈ NMax and ν′′ = εk(ν′) for some εk ∈ G.

The domains Di and Mi were defined in Tables 1 and 2 [10].

Proof. Equalities in item (1) follow immediately from definitions of the corresponding decompositions.
(2) Property (3.1) was proved in Theorem 3.1 [10], and property (3.3) is its corollary, with account of item (1).

Property (3.2) was proved in Theorem 3.2, and properties (3.4)–(3.6) are its corollaries, with account of item (1).
(3) The statement follows from (3.3), (3.4), (3.5), (3.6), with account of item (1).
(4) The statement follows from (3.4), (3.5), (3.6), and Lemma 2.16. �

3.2. Optimal synthesis

Theorem 3.2. Let q ∈ M̂ = M \ {q0}.
(1) Let q ∈ M̃ ∪Mconj∪Mrest = M̂ \MMax. Denote ν = (λ, t) = Exp−1(q) ∈ Ñ ∪Nconj∪Nrest = N̂ \NMax.

Then qs = Exp(λ, s), s ∈ [0, t], is the unique optimal trajectory connecting q0 with q. If q ∈ M̃ ∪Mrest,
then t < t(λ); if q ∈Mconj, then t = t(λ) = tconj

1 (λ).
(2) Let q ∈ MMax. Denote {ν′, ν′′} = Exp−1(q) ⊂ NMax, ν′ = (λ′, t) �= ν′′ = (λ′′, t). Then there exist ex-

actly two distinct optimal trajectories connecting q0 and q; namely, q′s = Exp(λ′, s) and q′′s = Exp(λ′′, s),
s ∈ [0, t]. Moreover, t = t(λ) < tconj

1 (λ).
(3) An optimal trajectory qs = Exp(λ, s) is generated by the optimal controls

u1(s) = sin(γs/2), u2(s) = − cos(γs/2),

where γs is the solution to the equation of pendulum γ̈s = − sinγs with the initial condition (γ0, γ̇0) = λ.

Proof. For any point q ∈ M̂ there exists an optimal trajectory qs = Exp(λ, s), s ∈ [0, t], ν = (λ, t) ∈ N , such
that qt = q and t ≤ tcut(λ). By Theorem 5.4 [7], we have t ≤ t(λ), thus ν ∈ N̂ .

(1) If q ∈ M̃ 
Mconj
Mrest, then by Theorem 3.1, there exists a unique ν = (λ, t) ∈ N̂ such that q = Exp(ν),
moreover, ν ∈ Ñ 
 Nconj 
 Nrest. Consequently, qs = Exp(λ, s), s ∈ [0, t], is a unique optimal trajectory
connecting q0 with q.

The inequality t < t(λ) for ν = (λ, t) ∈ Ñ 
Nrest, and the equality t = t(λ) = tconj
1 (λ) for ν ∈ Nconj follow

from definitions of the sets Ñ , Nrest, Nconj.
(2) If q ∈ MMax, then the statement follows similarly to item (1) from Theorem 3.1 and definition of the

set NMax.
(3) The expressions for optimal controls were obtained in Section 2 [7]. �

It follows from the definition of cut time that for any λ ∈ C and t ∈ (0, tcut(λ)), the trajectory q(s) = Exp(λ, s)
is optimal at the segment s ∈ [0, t]. For the case of finite tcut(λ), we obtain a similar statement for t = tcut(λ).

Theorem 3.3. If tcut(λ) < +∞, then the extremal trajectory Exp(λ, s) is optimal for s ∈ [0, tcut(λ)].
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Proof. Let tcut(λ) = t(λ) < +∞, i.e., λ ∈ C1 ∪ C2 ∪ C4, and let t = tcut(λ). Then (λ, t) ∈ NMax, and the
statement follows from item (2) of Theorem 3.2. �

3.3. Cut locus

Now we are able to describe globally the first Maxwell set

Max = {q ∈M | ∃t > 0, ∃ optimal trajectories qs �≡ q′s, s ∈ [0, t], such that qt = q′t = q}, (3.7)

the cut locus

Cut = {Exp(λ, t) | λ ∈ C, t = tcut(λ)}, (3.8)

and its intersection with caustic (the first conjugate locus)

Conj = {Exp(λ, t) | λ ∈ C, t = tconj
1 (λ)}. (3.9)

Theorem 3.4.

(1) Max = MMax,
(2) Cut = Mcut,
(3) Cut∩Conj = Mconj.

Proof. Items (1) and (2) follow from Theorem 3.2 and Corollary 3.3.
(3) Let q ∈Mconj, and let qs = Exp(λ, s), s ∈ [0, t(λ)], be the optimal trajectory connecting q0 with q. Thus

there are no conjugate points at the interval (0, t(λ)). By item (1) of Theorem 3.2, we have tconj
1 (λ) = t(λ).

Thus Mconj ⊂ Conj, and in view of item (2) of this theorem we get Mconj ⊂ Cut∩Conj. Now we prove that
Cut∩Conj ⊂Mconj, i.e., Mcut ∩ Conj ⊂Mconj.

Fix any point q ∈ Mcut. Then q = Exp(λ, t) for some (λ, t) ∈ Ncut = NMax 
 Nconj. In order to complete
the proof, we assume that (λ, t) ∈ NMax and show that q /∈ Conj. Since (λ, t) ∈ NMax, then t = t(λ). We prove
that t < tconj

1 (λ).
If λ ∈ C1 ∪C4, then tconj

1 (λ) = +∞ by Theorem 2.5 [10] (see (1.14)).
Let λ ∈ C2. If sn τ = 0, then (λ, t) ∈ Nconj, which is impossible since (λ, t) ∈ NMax. And if sn τ �= 0, then

t < tconj
1 (λ) by Proposition 2.2 [10].

The inclusion Cut∩Conj ⊂Mconj follows. �

Theorem 3.5. The cut locus has three connected components:

Cut = Cutglob 
Cut+loc 
Cut−loc, (3.10)

Cutglob = {q ∈M | θ = π}, (3.11)

Cut+loc = {q ∈M | θ ∈ (−π, π), R2 = 0, R1 > R1
1(|θ|)}, (3.12)

Cut−loc = {q ∈M | θ ∈ (−π, π), R2 = 0, R1 < −R1
1(|θ|)}, (3.13)

where the function R1
1 is defined by equation (2.20). The initial point q0 is contained in the closure of the

components Cut+loc, Cut−loc, and is separated from the component Cutglob.

Proof. By Theorems 3.4, 3.1 and Lemma 2.1, we have

Cut = Mcut = Exp(Ncut) = ∪i∈CM
′
i .
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R1

1.0
0.5
0.0
0.5
1.0

R2

2

0

2

th

Figure 17. Cut locus in rectifying coordinates (R1, R2, θ).

Denote

Cglob = {1, . . . , 8, 17, . . . , 24, 33, 34},
C+

loc = {13, . . . , 16, 29, . . . , 32},
C−

loc = {9, . . . , 12, 25, . . . , 28}.

Then
∪i∈CglobM

′
i = Cutglob, ∪i∈C+

loc
M ′

i = Cut+loc, ∪i∈C−
loc
M ′

i = Cut−loc,

and decomposition (3.10)–(3.13) follows.
The topological properties of Cutglob, Cut±loc follow from equalities (3.10)–(3.13). �
The cut locus in rectifying coordinates (R1, R2, θ) is presented in Figure 17, notice that here the horizontal

planes θ = 0 and θ = 2π should be identified. Global embedding of the cut locus to the solid torus (diffeomorphic
image of the state space M = SE(2)) is shown in Figure 18.

The curve Γ = Cut∩Conj has the following asymptotics near the initial point q0:

R1 = R1
1(θ) = 3

√
π/2 θ2/3 + o(θ2/3), θ → 0, R2 = 0,

see item (5) of Lemma 2.5. This agrees with the result on asymptotics of cut and conjugate loci for contact
sub-Riemannian structures in R

3 obtained by Agrachev [1] and by El-Alaoui et al. [5].
Illustrations of cut points and the corresponding optimal trajectories are given in Figures 19–27.

4. Explicit optimal solutions for special terminal points

In this section we describe optimal solutions for particular terminal points q1 = (x1, y1, θ1). Where applicable,
we interpret the optimal trajectories in terms of the corresponding optimal motion of a car in the plane.

For generic terminal points, we developed a software in computer system Mathematica [13] for numerical
evaluation of solutions to the problem.



SUB-RIEMANNIAN PROBLEM ON SE(2) 317

Figure 18. Cut locus: global view.

4.1. x1 �= 0, y1 = 0, θ1 = 0

In this case ν ∈ N5, and the optimal trajectory is

xt = t sgnx1, yt = 0, θt = 0, t ∈ [0, t1], t1 = |x1|,

the car moves uniformly forward or backward along a segment.

4.2. x1 = 0, y1 = 0, |θ1| ∈ (0, π)

We have ν ∈ N4, and the optimal solution is

xt = 0, yt = 0, θt = t sgn θ1, t ∈ [0, t1], t1 = |θ1|,

the car rotates uniformly around itself by the angle θ1.

4.3. x1 = 0, y1 = 0, θ1 = π

We have ν ∈ N4, and there are two optimal solutions:

xt = 0, yt = 0, θt = ±t, t ∈ [0, t1], t1 = π,

the car rotates uniformly around itself clockwise or counterclockwise by the angle π, see Figure 19.

4.4. x1 �= 0, y1 = 0, θ1 = π

There are two optimal solutions:

xt = (sgnx1)/k(t+ E(k) − E(K + t, k)), yt = (s/k)(
√

1 − k2 − dn(K + t, k)),

θt = s sgnx1(π/2 − am(K + t, k)), s = ±1, t ∈ [0, t1], t1 = 2K,

and k ∈ (0, 1) is the root of the equation

(2/k)(K(k) − E(k)) = |x1|,

see Figure 21.
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Figure 19. Cut point for λ ∈ C4 (optimal solu-
tions for x1 = y1 = 0, θ1 = π).

Figure 20. Cut point for λ ∈
C1, generic case (optimal solu-
tions for θ1 = π).

Figure 21. Cut point for λ ∈ C1,
symmetric case with cusp (optimal
solutions for x1 �= 0, y1 = 0,
θ1 = π).

4.5. x1 = 0, y1 �= 0, θ1 = π

There are two optimal solutions:

xt = s(1 − dn(t, k))/k, yt = (sgn y1/k)(t− E(t, k)),

θt = s sgn y1 am(t, k), s = ±1, t ∈ [0, t1], t1 = 2K,

and k ∈ (0, 1) is the root of the equation

(2/k)(K(k) − E(k)) = |y1|,

see Figure 22.



SUB-RIEMANNIAN PROBLEM ON SE(2) 319

Figure 22. Cut point for λ ∈ C1, symmetric case without cusp (optimal solutions for x1 = 0,
y1 �= 0, θ1 = π).

4.6. x1 = 0, y1 �= 0, θ1 = 0

There are two optimal solutions given by formulas for (xt, yt, θt) for the case λ ∈ C2 in Section 3.3 [7] for the
following values of parameters:

t ∈ [0, t1], t1 = 2kp1
1(k),

with the function p1
1(k) defined in Lemma 5.3 [7],

s2 = − sgn y1, ψ = ±K(k) − p1
1(k),

and k ∈ (0, 1) is the root of the equation

2(p1
1(k) − E(p1

1(k), k)
√

1 − k2/ dn(p1
1(k), k)) = |y1|,

see Figure 23.

4.7. (x1, y1) �= 0, θ1 = π

Introduce the polar coordinates x1 = ρ1 cosχ1, y1 = ρ1 sinχ1. There are two optimal solutions given by
formulas for (xt, yt, θt) for the case λ ∈ C1 in Section 3.3 [7] for the following values of parameters:

t ∈ [0, t1], t1 = 2K(k),

and k ∈ (0, 1) is the root of the equation

2(p1
1(k) − E(p1

1(k), k)
√

1 − k2/ dn(p1
1(k), k)) = ρ1,

s1 = ±1, ϕ = s1F (π/2 − χ1, k),

see Figures 20–22. In the cases y1 = 0 and x1 = 0 we get respectively the cases considered in Sections 4.4
and 4.5.



320 YU.L. SACHKOV

Figure 23. Optimal solutions for x1 = 0, y1 �= 0, θ1 = 0.

Figure 24. Cut point for
λ ∈ C2, generic case.

Figure 25. Cut point for
λ ∈ C2, special case with one
cusp.

Figure 26. Cut point for
λ ∈ C2 approaching conju-
gate point.

Figure 27. Cut point for
λ ∈ C2 coinciding with con-
jugate point.
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4.8. y1 �= 0, θ1 = 0

There is a unique optimal solution given by formulas for (xt, yt, θt) for the case λ ∈ C2 in Section 3.3 [7] for
the following values of parameters:

s2 = − sgny1,

k ∈ (0, 1) and p ∈ (0, p1
1(k)] are solutions to the system of equations

s(sgn y1)2kf1(p, k)/ dn(p, k) = x1, s = ±1,

2(p− E(p))
√

1 − k2/ dn(p, k) = |y1|,

and

t ∈ [0, t1], t1 = 2kp, ψ = sK(k) − p.
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