Free access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 405 - 418
DOI http://dx.doi.org/10.1051/cocv:1999115
Published online 15 August 2002
  1. M. Asch and G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation - a numerical study. ESAIM: Contr., Optim. Cal. Var. 3 (1998) 163-212.
  2. S. Avdonin and S. Ivanov, Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, N.Y. (1995).
  3. S.A. Avdonin, M.I. Belishev and S.A. Ivanov, Controllability in filled domain for the multidimensional wave equation with singular boundary control. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 210 (1994) 7-21.
  4. S.A. Avdonin, S.A. Ivanov and D.L. Russell, Exponential bases in Sobolev spaces in control and observation problems for the wave equation. Proc. Roy. Soc. Edinburgh (to be submitted).
  5. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Theor. Appl. 30 (1992) 1024-1095. [CrossRef] [MathSciNet]
  6. H.O. Fattorini, Estimates for sequences biorthogonal to certain complex exponentials and boundary control of the wave equation, Springer, Lecture Notes in Control and Information Sciences 2 (1979).
  7. R. Glowinski, C.-H. Li and J.-L. Lions, A numerical approach to the exact controllability of the wave equation. (I) Dirichlet controls: description of the numerical methods. Japan J. Appl. Math. 7 (1990) 1-76. [CrossRef] [MathSciNet]
  8. F. Gozzi and P. Loreti, Regularity of the minimum time function and minimum energy problems: the linear case. SIAM J. Control Optim. (to appear).
  9. W. Krabs, On Moment Theory and Controllability of one-dimensional vibrating Systems and Heating Processes, Springer, Lecture Notes in Control and Information Sciences 173 (1992).
  10. W. Krabs, G. Leugering and T. Seidman, On boundary controllability of a vibrating plate. Appl. Math. Optim. 13 (1985) 205-229. [CrossRef] [MathSciNet]
  11. I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators. J. Math. Pures Appl. 65 (1986) 149-192. [MathSciNet]
  12. J.-L. Lions, Contrôlabilité exacte, stabilisation et perturbation des systèmes distribués, Masson, Paris Collection RMA 1 (1988).
  13. N.K. Nikol'skii, A Treatise on the Shift Operator, Springer, Berlin (1986).
  14. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions. SIAM Rev. 20 (1978) 639-739. [CrossRef] [MathSciNet]
  15. T.I. Seidman, The coefficient map for certain exponential sums. Nederl. Akad. Wetensch. Proc. Ser. A 89 (= Indag. Math. 48) (1986) 463-468.
  16. T.I. Seidman, S.A. Avdonin and S.A. Ivanov, The ``window problem'' for complex exponentials. Fourier Analysis and Applications (to appear).
  17. D. Tataru, Unique continuation for solutions of PDE's; between Hörmander's theorem and Holmgren's theorem. Comm. PDE 20 (1995) 855-884.