Free access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 497 - 513
DOI http://dx.doi.org/10.1051/cocv:1999119
Published online 15 August 2002
  1. C. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem. J. Anal. Math. 37 (1980) 128-144. [CrossRef]
  2. C. Berenstein, The Pompeiu problem, what's new?, Deville R. et al. (Ed.), Complex analysis, harmonic analysis and applications. Proceedings of a conference in honour of the retirement of Roger Gay, June 7-9, 1995, Bordeaux, France. Harlow: Longman. Pitman Res. Notes Math. Ser. 347 (1996) 1-11.
  3. E. Beretta and M. Vogelius, An inverse problem originating from magnetohydrodynamics. III: Domains with corners of arbitrary angles. Asymptotic Anal. 11 (1995) 289-315. [MathSciNet]
  4. H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Collection Math. Appl. Pour la Maîtrise, Masson, Paris (1983).
  5. L. Brown, B.M. Schreiber and B.A. Taylor, Spectral synthesis and the Pompeiu problem. Ann. Inst. Fourier 23 (1973) 125-154.
  6. P. Grisvard, Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics, 24. Pitman, Boston-London-Melbourne (1985).
  7. J.-L. Lions, Remarques sur la contrôlabilité approchée, Control of distributed systems, Span.-Fr. Days, Malaga/Spain 1990, Grupo Anal. Mat. Apl. Univ. Malaga 3 (1990) 77-87.
  8. J.-L. Lions and E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vols. I, II, III, Dunod, Paris (1968).
  9. J.-L. Lions and E. Zuazua, Approximate controllability of a hydro-elastic coupled system. ESAIM: Contr. Optim. Calc. Var. 1 (1995) 1-15. [CrossRef] [EDP Sciences]
  10. A. Osses, A rotated direction multiplier technique. Applications to the controllability of waves, elasticity and tangential Stokes control, SIAM J. Cont. Optim., to appear.
  11. A. Osses and J.-P. Puel, Approximate controllability of a linear model in solid-fluid interaction in a rectangle. to appear.
  12. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York. Appl. Math. Sci. 44 (1983).
  13. J. Serrin, A symmetry problem in potential theory. Arch. Rational. Mech. Anal. 43 (1971) 304-318. [CrossRef] [MathSciNet]
  14. R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam (1977).
  15. M. Vogelius, An inverse problem for the equation Formula .Ann. Inst. Fourier, 44 (1994) 1181-1209.
  16. S.A. Williams, Analyticity of the boundary for Lipschitz domains without the Pompeiu property. Indiana Univ. Math. J. 30 (1981) 357-369. [CrossRef] [MathSciNet]