Free access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 515 - 535
DOI http://dx.doi.org/10.1051/cocv:1999120
Published online 15 August 2002
  1. J. Ackermann, Sampled-data control system: Analysis and synthesis, robust system design, Springer-Verlag (1985).
  2. J. Baillieul and M. Levi, Rotational elastic dynamics. Physica D, 27 (1987) 43-62 .
  3. P. Bénilan, Équations d'évolution dans un espace de Banach quelconque et applications, Thèse, Paris XI, Orsay (1972).
  4. P. Bénilan, M.G. Crandal and A. Pazy, Nonlinear evolution equations in Banach spaces, monograph in preparation.
  5. A.M. Bloch and E.S. Titi, On the dynamics of rotating elastic beams, in Proc. Conf. New Trends Syst. theory, Genoa, Italy, July 9-11, 1990, Conte, Perdon, and Wyman, eds., Cambridge, MA: Birkhäuser (1990).
  6. H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, London (1973).
  7. H. Brezis, Analyse Fonctionnelle. Théorie et applications, Masson (1983).
  8. F. Conrad and B. Rao, Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback. Asymptotic Analysis, 7 (1993) 159-177.
  9. J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body-beam without damping. IEEE Trans. Automat. Contr., 43 (1998) 608-618. [CrossRef] [MathSciNet]
  10. M.G. Crandall, Nonlinear semigroups and evolution governed by accretive operators. Pro. Sympo. in pure Math. 45 (1986) 305-337.
  11. C.M. Dafermos and M. Slemrod, Asymptotic behaviour of non linear contractions semi-groups, J. Func. Anal . 14 (1973) 97-106.
  12. A. Haraux, Systèms Dynamique Dissipatifs et Applications. Collection RMA (17) Masson, Paris (1991).
  13. V. Jurdjevic and J. P. Quin, Controllability and stability, J. Differential Equations, 28 (1978) 381-389.
  14. V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. , 69 (1990) 33-54. [MathSciNet]
  15. V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson and John Wiley (1994).
  16. H. Laousy, C.Z. Xu and G. Sallet, Boundary feedback stabilization of a rotating body-beam system. IEEE Trans. Automat. Contr., 41 (1996) 241-245. [CrossRef] [MathSciNet]
  17. O. Morgül, Orientation and stabilization of a flexible beam attached to a rigid body: Planar motion. IEEE Trans. Automat. Contr., 36 (1991) 953-963. [CrossRef]
  18. O. Morgül, Constant angular velocity control of a rotating flexible structure, in Proc. 2nd Conf., ECC'93., Groningen, Netherlands (1993) 299-302.
  19. O. Morgül, Control of a rotating flexible structure. IEEE Trans. Automat. Contr. 39 (1994) 351-356.
  20. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York (1983).
  21. M. Pierre, Perturbations localement lipschitziennes et continues d'opérateurs m-accretifs. Proc. Amer. Math. Soc., 58 (1976) 124-128. [MathSciNet]
  22. B. Rao, Decay estimate of solution for hybrid system of flexible structures. Euro. J. Appl. Math. 4 (1993) 303-319 .
  23. C.Z. Xu and J. Baillieul, Stabilizability and stabilization of a rotating body-beam system with torque control. IEEE Trans. Automat. Contr. 38 (1993) 1754-1765. [CrossRef] [MathSciNet]
  24. C.Z. Xu and G. Sallet, Boundary stabilization of a rotating flexible system. Lecture Notes in Control and Information Sciences 185, R.F. Curtain, A. Bensoussan and J.L. Lions, eds., Springer Verlag, New York (1992) 347-365.
  25. A. Zeidler, Non linear functional analysis and its applications, Vol. 2, Springer Verlag, New York (1986).