Free access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 577 - 593
DOI http://dx.doi.org/10.1051/cocv:1999123
Published online 15 August 2002
  1. F. Ammar-Khodja and A. Benabdallah, Sufficient conditions for uniform stabilization of second order equations by dynamic controllers. Dynamics of Continuous, Discrete and Impulsive Systems, to appear.
  2. F. Ammar-Khodja and A. Benabdallah, Conditions suffisantes pour la stabilisation uniforme d'équations du second ordre par des contrôleurs dynamiques. C.R. Acad. Sci. Sér. I Math. 323 (1996) 615-620.
  3. F. Ammar Khodja, A. Benabdallah and D. Teniou, Coupled systems. Abstract and Appl. Anal. 1 (1996) 327-340. [CrossRef] [MathSciNet]
  4. F.V. Atkinson, H. Langer, R. Mennicken and A.A. Shkalikov, The essential spectrum of some matrix operators. Math. Nachr. 167 (1994) 5-20. [CrossRef] [MathSciNet]
  5. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. [CrossRef] [MathSciNet]
  6. A.V. Balakrishnan, Applied functional analysis, Springer-Verlag, New-York, Heidelberg (1976).
  7. Bourgeat A., Simulating gas-liquid flow in a well-reservoir system. Numerical Methods in Engineering and Applied Sciences, H. Adler, J.C. Heinrich, S. Lavanchy, E. Onate and B. Suarez, Eds., CIMNE, Barcelona (1992).
  8. T. Cazenave and Dickstein F., On the initial value problem for a linear model of well-reservoir coupling (1996) preprint.
  9. S. Chen and R. Triggiani, Proof of extensions of two conjectures on structural damping for elastic systems. Pacific J. Math. 136 (1989) 15-55. [CrossRef] [MathSciNet]
  10. R. Dautray and J.L. Lions, Analyse Mathématique et Calcul Numérique 2, Masson (1987).
  11. R.F. Curtain and G. Weiss, Dynamic stabilization of regular linear systems. IEEE Trans. Automat. Contr. 42 (1997) 4-21. [CrossRef] [MathSciNet]
  12. R.F. Curtain and H.J. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, Texts in Applied Mathematics 21 (1995).
  13. K.-J. Engel, Operator matrices and systems of evolution equations (1998).
  14. A. Haraux, Une remarque sur la stabilisation de certains systemes du deuxième ordre en temps. Portugal Math. 46 (1989) 245-258. [MathSciNet]
  15. A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, RMA 17, Masson (1991).
  16. F. Huang, Characteristic conditions for exponential stability of linear dynamic systems in Hilbert spaces. Ann. Diff. Eqs. 1 (1985).
  17. D.B. Henry, O. Lopes and A. Perissinitto Jr., On the essential spectrum of a semigroup of thermoelasticity. Nonlinear Anal., TMA 21 (1993) 65-75.
  18. J.E. Lagnese and J.L. Lions, Modelling Analysis and Control of Thin Plates, RMA 6, Masson (1988).
  19. Lasiecka I. and Triggiani R., Differential and Algebraic Riccati Equations ..., Springer-Verlag, Lecture Notes in Control and Information Sciences 164 (1991).
  20. Z. Liu and J. Yong, Qualitative properties of certain C0 semigroups arising in elastic systems with various dampings (1998) preprint.
  21. G. Lebeau and E. Zuazua E., Null controllability of a system of linear thermoelasticity (1995) preprint.
  22. R. Nagel, Towards a ``Matrix Theory'' for unbounded operators matrices. Math. Z. 201 (1989) 57-68.
  23. A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, Applied Mathematical Sciences 44 (1983).
  24. J.E. Munoz Rivera and R. Racke, Smoothing properties, decay and global existence of solutions to nonlinear coupled systems of thermoelastic type. SIAM J. Math. Anal. (1995) 1547-1563.
  25. D.L. Russell, A comparison of certain elastic dissipation mechanisms via decoupling and projection techniques. Quart. Appl. Math. 49 (1991) 373-396.
  26. D.L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl. 173 (1993) 339-358.
  27. L. De Teresa and E. Zuzua, Controllability for the linear system of thermoelastic plates. Adv. Diff. Eqs. (1996) 369-402.
  28. J. Zabcyk, Mathematical Control Theory: An Introduction, Birkhauser (1995).
  29. E. Zuzua, Controllability of the linear system of thermoelasticity. J. Math. Pures Appl. 74 (1995) 303-346.