Free access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 609 - 630
DOI http://dx.doi.org/10.1051/cocv:1999125
Published online 15 August 2002
  1. G. Ammar and C. Martin, The geometry of matrix eigenvalue methods. Acta Appl. Math. 5 (1986) 239-279. [CrossRef] [MathSciNet]
  2. F.A. Badawi and A. Lindquist, A Hamiltonian approach to the factorization of the matrix Riccati equation. Math. Programming Stud. 18 (1982) 27-38.
  3. C.I. Byrnes, A. Lindquist, S.V. Gusev and S. Matee, A complete parametrization of all positive rational extensions of a covariance sequence. IEEE Trans. Automat. Control AC-40 (1995) 1841-1857.
  4. C.I. Byrnes and A. Lindquist, On the partial stochastic realization problem. IEEE Trans. Automat. Control AC-42 (1997) 1049-1070.
  5. C.I. Byrnes, A. Lindquist and T. McGregor, Predictability and unpredictability in Kalman filtering. IEEE Trans. Automat. Control 36 (1991) 563-579. [CrossRef] [MathSciNet]
  6. C.I. Byrnes, A. Lindquist and Y. Zhou, Stable, unstable and center manifolds for fast filtering algorithms. Modeling, Estimation and Control of Systems with Uncertainty, G.B. Di Masi, A. Gombani and A. Kurzhanski, Eds., Birkhäuser Boston Inc. (1991).
  7. , On the nonlinear dynamics of fast filtering algorithms. SIAM J. Control Optim. 32 (1994) 744-789. [CrossRef] [MathSciNet]
  8. J.W.S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, Cambridge (1956).
  9. H.J. Landau, C.I. Byrnes and A. Lindquist, On the well-posedness of the rational covariance extension problem, Tech. Report TRITA/MAT-96-OS5, Department of Mathematics, KTH, Royal Institute of Technology, Stockholm, Sweden (1996).
  10. S.V. Gusev, C.I. Byrnes and A. Lindquist, A convex optimization approach to the rational covariance extension problem, Tech. Report TRITA/MAT-97-OS9, Department of Mathematics, KTH, Royal Institute of Technology, Stockholm, Sweden (1997).
  11. P. Faurre, M. Clerget and F. Germain, Opérateurs Rationnels Positifs, Dunod (1979).
  12. G.H. Hardy and J.E. Littlewood, Some problems of Diophantine approximation. Acta Math. 37 (1914) 155-239. [CrossRef] [MathSciNet]
  13. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford at the Clarendon Press (1954).
  14. R. Hermann and C. Martin, Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations, I: General Lie-theoretic methods. Math. Systems Theory 15 (1982) 277-284. [CrossRef]
  15. , Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations. II. Math. Systems Theory 16 (1983) 297-306. [CrossRef] [MathSciNet]
  16. J.F. Koksma, Diophantische Approximationen, Chelsea Publishing Company, New York (1936).
  17. A.J. Laub and K. Meyer, Canonical forms for symplectic and Hamiltonian matrices. Celestial Mech. 9 (1974) 213-238. [CrossRef] [MathSciNet]
  18. A. Lindquist, A new algorithm for optimal filtering of discrete-time stationary processes. SIAM J. Control 12 (1974) 736-746. [CrossRef] [MathSciNet]
  19. , Some reduced-order non-Riccati equations for linear least-squares estimation: the stationary, single-output case. Int. J. Control 24 (1976) 821-842. [CrossRef]
  20. C. Martin, Grassmannian manifolds, Riccati equations, and feedback invariants of linear systems, Geometrical Methods for the Theory of Linear Systems, C.I. Byrnes and C. Martin, Eds., Reidel Publishing Company (1980) 195-211.
  21. I. Niven, Diophantine Approximations, Interscience Publishers, New York, London (1956).
  22. I.R. Shafarevitch, Basic Algebraic Geometry, Springer-Verlag, Heidelberg (1974).
  23. M. Shayman, Phase portrait of the matrix Riccati equations. SIAM J. Control Optim. 24 (1986) 1-65. [CrossRef] [MathSciNet]
  24. Y. Zhou, Monotonicity and finite escape time of solutions of the discrete-time riccati equation, to appear in proceedings of European Control Conference, Karlsruhe (1999).