Free access
Issue
ESAIM: COCV
Volume 4, 1999
Page(s) 631 - 665
DOI http://dx.doi.org/10.1051/cocv:1999100
Published online 15 August 2002
  1. K. Alexander, J.T. Chayes et L. Chayes, The Wulff construction and asymptotics of the finite cluster distribution for 2 dimensional Bernoulli percolation. Comm. Math. Phys. 131 (1990) 1-50. [CrossRef] [MathSciNet]
  2. I. Babenko, Closed geodesics, asymptotic volume and characteristics of group growth. Izv. Akad. Nauk SSSR 52 (1988) 675-711; Engl. Transl. Math. USSR Izv. 33 (1989) 1-37.
  3. I. Babenko, Volume rigidity of 2-dimensional manifolds. Mat. Zametki 48 (1990) 10-14; Engl. Transl. Math. Notes 4 (1990) 629-632.
  4. W. Blaschke, Über affine Geometrie VII: Neue Extremeigenschaften von Ellipse und Ellipsoid. Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 69 (1917) 306-318.
  5. D.Yu. Burago et S. Ivanov, On asymptotic volume of tori. Geom. Funct. Anal. 5 (1995) 800-808. [CrossRef] [MathSciNet]
  6. D.Yu. Burago et S. Ivanov, On asymptotic isoperimetric constant of tori (1998) preprint.
  7. H. Brunn, Über Ovale und Eiflächen. Inaug. Diss. München (1887).
  8. D.Yu. Burago, Periodic metrics. Representation theory and dynamical systems. Adv. Sov. Math. 9 (1992) 205-210.
  9. P. Curie, Sur la formation des cristaux et sur les constantes capillaires de leurs différentes faces. Bull. Soc. Minér. France 5 (1885) 145-150.
  10. R. Cerf, Large deviation for three dimensional supercritical percolation. Prépublication d'Orsay 98.71 (1998).
  11. J. de Coninck, F. Dunlop et V. Rivasseau, On the microscopic validity of the Wulff construction and of the generalized Young equation. Comm. Math. Phys. 121 (1989) 401-419. [CrossRef] [MathSciNet]
  12. R. Dobrushin, R. Kotecky et S. Shlosman, Wulff construction, a global shape from local interaction. Transl. Math. Monogr. 104. Providence, RI, Amer. Math. Soc. (1992).
  13. G. Faber, Beweis dass unter allen homogenen membranen von gleicher Flache und gleicher Spanne, die Kreisformige den tiefsten Grundton gibt. S. B. Math. Kl. Bayer. Akad. Wiss. (1923) 169-172.
  14. H. Federer, Geometric measure theory. Springer Verlag, Berlin, Grundlehren Band 153 (1969).
  15. H. Federer, Real flat chains, cochains and variational problems. Indiana Univ. Math. J. 24 (1974) 351-407. [CrossRef] [MathSciNet]
  16. C.F. Gauss, Principia generalia theoriae figurae fluidorum in statu aequilibrii. C.F. Gauss Werke, Band 5, Teubner (1877) 29-77.
  17. M. Gromov, Structures métriques pour les variétés riemanniennes, J. Lafontaine et P. Pansu, Eds., Textes Mathématiques, 1. Cedic/Fernand Nathan, Paris (1981).
  18. P.M. Gruber et J.M. Wills, Handbook of convex geometry. Volume A. North-Holland, Amsterdam (1993).
  19. E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft der Kreise. Math. Ann. 94 (1924) 97-100. [CrossRef] [MathSciNet]
  20. J. Lott, Remark about heat diffusion on periodic spaces. Preprint Univ. Michigan (1997).
  21. V. Mazya, Classes of domains and embedding theorems for function spaces. Dokl. Akad. Nauk USSR 133 (1960) 527-530.
  22. J. Mather, Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169-207. [CrossRef] [MathSciNet]
  23. R.A. Minlos et Ya.G. Sinai, The phenomenon of phase separation in some lattice models of a gas I. Mat. Sb. 73 (1967) 375-448; Math. USSR Sb. 2 (1967) 325-395; II. Tr. Mosk. Mat. Obshch. 19 (1968) 113-178; Trans. Mosc. Math. Soc. 19 (1968) 121-196. [MathSciNet]
  24. J. Moser, On the volume element on a manifold. Trans. Amer. Math. Soc. 120 (1965) 286-294. [CrossRef] [MathSciNet]
  25. V. Milman et G. Schechtman, Asymptotic theory of finite dimensional normed spaces. Springer, Berlin, Lecture Notes in Math. 1200 (1986).
  26. P. Pansu, Croisssance des boules et des géodésiques fermées dans les nilvariétés. Erg. Th. Dynam. Syst. 3 (1983) 415-446.
  27. P. Pansu, Profil isopérimétrique des métriques périodiques. Prépublication d'Orsay No. 98-44 (1998).
  28. Y. Reshetnyak, An extremal problem from the theory of convex curves. Uspekhi Mat. Nauk 8 (1953) 125-126.
  29. L.A. Santalo, Un invariante afin para los cuerpos convexos del espacio de n dimensiones. Portugal. Math. 8 (1949) 155-161.
  30. U. Schnell, Periodic sphere packings and the Wulff-shape. Beiträge Algebra Geom. 40 (1999) 125-140.
  31. J. Sanchez-Hubert et E. Sanchez-Palencia, Introduction aux méthodes asymptotiques et à l'homogénéisation. Masson, Paris (1992).
  32. J.E. Taylor, Unique structure of solutions to a class of nonelliptic variational problems. Stanford 1973. Differential Geom., Proc. Symp. Pure Math. 27 Part 1 (1975) 419-427.
  33. J.M. Wills, Lattice packings of spheres and the Wulff-shape. Mathematika 43 (1996) 229-236. [CrossRef] [MathSciNet]
  34. G. Wulff, Zur Frage der Geschwindigkeit des Wachtums und der Auflösung der Krystalflächen. Z. Krystall. Min. 34 (1901) 449-530.