Free access
Volume 5, 2000
Page(s) 293 - 311
Published online 15 August 2002
  1. D. Aeyels, Stabilization of a class of nonlinear systems by smooth feedback control. Systems Control Lett. 5 (1985) 289-294. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  2. Z. Artstein, Stabilization with relaxed control. Nonlinear Anal. TMA 7 (1983) 1163-1173. [CrossRef] [MathSciNet]
  3. A. Bacciotti, Local stabilizability of nonlinear control systems. World Scientific, Singapore, River Edge, London, Ser. Adv. Math. Appl. Sci. 8 (1992).
  4. R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, edited by R.W. Brockett, R.S. Millman and H.J. Sussmann. Basel-Boston, Birkäuser (1983) 181-191.
  5. R.T. Bupp, D.S. Bernstein and V.T. Coppola, A benchmark problem for nonlinear control design. Internat J. Robust Nonlinear Control 8 (1998) 307-310. [CrossRef] [MathSciNet]
  6. height 2pt depth -1.6pt width 23pt, Experimental implementation of integrator back-stepping and passive nonlinear controllers on the RTAC testbed. Internat J. Robust Nonlinear Control 8 (1998) 435-457. [CrossRef] [MathSciNet]
  7. J.-M. Coron, L. Praly and A.R. Teel, Feedback stabilization of nonlinear system: Sufficient conditions and lyapunov and input-output techniques, in Trends in Control, a European Perspective, edited by A. Isidori. Springer-Verlag (1995) 283-348.
  8. L. Faubourg, La déformation de fonctions de Lyapunov, Rapport de DEA d'automatique et informatique industrielle. INRIA-Université de Lille 1 (1997).
  9. L. Faubourg and J.-B. Pomet, Strict control Lyapunov functions for homogeneous Jurdjevic-Quinn type systems, in Nonlinear Control Systems Design Symposium (NOLCOS'98), edited by H. Huijberts, H. Nijmeijer, A. van der Schaft and J. Scherpen. IFAC (1998) 823-829.
  10. L. Faubourg and J.-B. Pomet, Design of control Lyapunov functions for ``Jurdjevic-Quinn'' systems, in Stability and Stabilization of Nonlinear Systems, edited by D. Aeyels et al. Springer-Verlag, Lecture Notes in Contr. & Inform. Sci. (1999) 137-150.
  11. J.-P. Gauthier, Structure des Systèmes non-linéaires. Éditions du CNRS, Paris (1984).
  12. W. Hahn, Stability of Motion. Springer-Verlag, Berlin, New-York, Grundlehren Math. Wiss. 138 (1967).
  13. V. Jurdjevic and J.P. Quinn, Controllability and stability. J. Differential Equations 28 (1978) 381-389. [CrossRef] [MathSciNet]
  14. M. Kawski, Homogeneous stabilizing feedback laws. Control Theory and Adv. Technol. 6 (1990), 497-516.
  15. H.K. Khalil, Nonlinear Systems. MacMillan, New York, Toronto, Singapore (1992).
  16. J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. AMS Trans., Ser. II 24 (1956) 19-77.
  17. J.-P. LaSalle, Stability theory for ordinary differential equations. J. Differential Equations 4 (1968) 57-65. [CrossRef] [MathSciNet]
  18. W. Liu, Y. Chitour and E. Sontag, Remarks on finite gain stabilizability of linear systems subject to input saturation, in 32 Formula IEEE Conf. on Decision and Control. San Antonio, USA (1993) 1808-1813.
  19. F. Mazenc, Stabilisation de trajectoires, ajout d'intégration, commandes saturées, Thèse de doctorat. École des Mines de Paris (1989).
  20. P. Morin, Robust stabilization of the angular velocity of a rigid body with two actuators. European J. Control 2 (1996) 51-56.
  21. R. Outbib and G. Sallet, Stabilizability of the angular velocity of a rigid body revisited. Systems Control Lett. 18 (1992) 93-98. [CrossRef] [MathSciNet]
  22. G. Sallet, Historique des techniques de Jurdjevic-Quinn (private communication).
  23. R. Sépulchre, M. Jankovic and P.V. Kokotovic, Constructive Nonlinear Control. Springer-Verlag, Comm. Control Engrg. Ser. (1997).
  24. E.D. Sontag, Feedback stabilization of nonlinear systems, in Robust control of linear systems and nonlinear control, Vol. 2 of proceedings of MTNS'89, edited by M.A. Kaashoek, J.H. van Schuppen and A. Ran. Basel-Boston, Birkhäuser (1990) 61-81.
  25. M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1. Publish or Perish, Houston, second Ed. (1979).
  26. J. Tsinias, Remarks on feedback stabilizability of homogeneous systems. Control Theory and Adv. Technol. 6 (1990) 533-542.
  27. J. Zhao and I. Kanellakopoulos, Flexible back-stepping design for tracking and disturbance attenuation. Internat J. Robust Nonlinear Control 8 (1998) 331-348. [CrossRef] [MathSciNet]