Free access
Issue
ESAIM: COCV
Volume 5, 2000
Page(s) 579 - 590
DOI http://dx.doi.org/10.1051/cocv:2000122
Published online 15 August 2002
  1. Y. Amirat, K. Hamdache and A. Ziani, Some Results on Homogenization of Convection-Diffusion Equations. Arch. Rational Mech. Anal. 114 (1991) 155-178. [CrossRef] [MathSciNet]
  2. E.J. Balder, Lectures on Young measures. Preprint No. 9517, CEREMADE. Université Paris IX - Dauphine, France (1995).
  3. J.M. Ball, A version of the fundamental theorem for Young measures, Partial Differential Equations and Continuum Models of Phase Transitions, edited by M. Rascle, M. Slemrod and D. Serre. Springer Verlag, Berlin (1989) 207-215.
  4. P. Cartier, J.M.G. Fell and P.A. Meyer, Comparaison des mesures portées par un ensemble convexe compact. Bull. Soc. Math. France 92 (1964) 435-445. [MathSciNet]
  5. G.H. Hardy, J.E. Littlewood and G.E. Pólya, Inequalities. Cambridge (1952).
  6. P.A. Meyer, Probabilités et potentiel. Hermann, Paris (1966).
  7. J.V. Ryff, On the representation of doubly stochastic operators. Pacific J. Math. 13 (1963) 1379-1386. [MathSciNet]
  8. J.V. Ryff, Orbits of L1-functions under doubly stochastic transformations. Trans. Amer. Math. Soc. 117 (1965) 92-100. [MathSciNet]
  9. L. Tartar, Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot Watt Symposium, Vol. IV. Res. Notes in Math. Pitman (1979) 136-212.
  10. L. Tartar, Memory effects and homogenization. Arch. Rational Mech. Anal. 111 (1990) 121-133. [CrossRef] [MathSciNet]
  11. M. Valadier, Young measures. Methods of Nonconvex Analysis, edited by A. Cellina. Springer Verlag, Lecture Notes in Math. 1446 (1990) 152. [CrossRef]