Free access
Issue
ESAIM: COCV
Volume 5, 2000
Page(s) 71 - 85
DOI http://dx.doi.org/10.1051/cocv:2000102
Published online 15 August 2002
  1. E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string. J. Elasticity 25 (1991) 137-148. [CrossRef] [MathSciNet]
  2. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125-145. [CrossRef] [MathSciNet]
  3. G. Anzellotti, S. Baldo and D. Percivale, Dimension reduction in variational problems, asymptotic development in Formula -convergence, and thin structures in elasticity. Asymptot. Anal. 9 (1994) 61-100.
  4. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337-403. [CrossRef] [MathSciNet]
  5. J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. [CrossRef] [MathSciNet]
  6. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. [CrossRef] [MathSciNet]
  7. H. Ben Belgacem, Une méthode de Formula -convergence pour un modèle de membrane non linéaire. C. R. Acad. Sci. Paris. Sér. I Math. (1996) 845-849.
  8. H. Ben Belgacem, Modélisation de structures minces en élasticité non linéaire. Thèse de l'Université Pierre et Marie Curie, Paris (1996).
  9. G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 463-479. [CrossRef] [MathSciNet]
  10. P.G. Ciarlet, Mathematical Elasticity. Vol. I: Three-dimensional Elasticity. North-Holland, Amesterdam (1988).
  11. B. Dacorogna, Quasiconvexity and relaxation of non convex problems in the calculus of variations. J. Funct. Anal. 46 (1982) 102-118. [CrossRef] [MathSciNet]
  12. B. Dacorogna, Remarques sur les notions de polyconvexité, quasiconvexité et convexité de rang 1. J. Math. Pures Appl. 64 (1985) 403-438. [MathSciNet]
  13. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1989).
  14. B. Dacorogna and P. Marcellini, General existence theorems for Hamilton-Jacobi equations in the scalar and vectoriel cases. Acta Math. 178 (1997) 1-37. [CrossRef] [MathSciNet]
  15. I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Paris (1974).
  16. I. Fonseca, The lower quasiconvex envelope of the stored energy for an elastic crystal. J. Math. Pures Appl. 67 (1988) 175-195. [MathSciNet]
  17. I. Fonseca, Variational techniques for problems in materials science. Progr. Nonlinear Differential Equations Appl. 25 (1996) 162-175.
  18. I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Ann. Inst. H. Poincaré 14 (1997) 309-338. [CrossRef] [MathSciNet]
  19. R.V. Kohn and G. Strang, Explicit relaxation of a variational problem in optimal design. Bull. Amer. Math. Soc. 9 (1983) 211-214. [CrossRef] [MathSciNet]
  20. R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I, II and III. Comm. Pure Appl. Math. 39 (1986) 113-137, 139-182, 353-377.
  21. H. Le Dret and A. Raoult, Le modèle de membrane non linéaire comme limite variationnelle de l'élasticité non linéaire tridimensionnelle. C. R. Acad. Sci. Paris Sér. I Math. (1993) 221-226.
  22. H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of three-dimensional nonlinear elasticity. J. Math. Pures Appl. 74 (1995) 549-578. [MathSciNet]
  23. P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 1-28. [CrossRef] [MathSciNet]
  24. P. Marcellini, On the definition and weak lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré 3 (1986) 391-409.
  25. C.B. Morrey Jr., Quasi-convexity and the lower semi-continuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. [CrossRef] [MathSciNet]
  26. C.B. Morrey Jr., Multiple Integrals in the Calculus of Variations. Springer, Berlin (1966).
  27. S. Müller, Variational models for microstructure and phase transitions, to appear in Proc. C.I.M.E. summer school ``Calculus of variations and geometric evolution problems''. Cetraro (1996).
  28. R.W. Ogden, Large deformation isotropic elasticity: On the correlation of the theory and experiment for compressible rubberlike solids. Proc. Roy. Soc. London Ser. A 328 (1972).
  29. E.T. Rockafellar, Convex Analysis. Princeton University Press (1970).
  30. L. Tartar, Compensated Compactness and Applications to Partial Differential Equations, in Nonlinear Analysis and Mechanics, Heriot-Watt Symp. Vol. IV, R.J. Knops Ed. Pitman, London (1979).
  31. V. Zhikov, Lavrentiev phenomenon and homogenization for some variational problems. C. R. Acad. Sci. Paris Sér. I Math. (1993) 435-439.