Free access
Issue
ESAIM: COCV
Volume 5, 2000
Page(s) 175 - 185
DOI http://dx.doi.org/10.1051/cocv:2000106
Published online 15 August 2002
  1. J.-P. AUBIN, Viability Theory. Birkhäuser (1991).
  2. F. COLONIUS AND W. KLIEMANN, Infinite time optimal control and periodicity. Appl. Math. Optim. 20 (1989) 113-130. [CrossRef] [MathSciNet]
  3. height 2pt depth -1.6pt width 23pt, Some aspects of control systems as dynamical systems. J. Dynam. Differential Equations 5 (1993) 469-494. [CrossRef] [MathSciNet]
  4. height 2pt depth -1.6pt width 23pt, The Dynamics of Control. Birkhäuser (2000) to appear.
  5. M. DELLNITZ AND A. HOHMANN, A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75 (1997) 293-317. [CrossRef] [MathSciNet]
  6. G. HÄCKL, Reachable Sets, Control Sets and Their Computation. Dissertation, Universität Augsburg, ``Augsburger Mathematische Schriften Band 7" (1996).
  7. W. KLIEMANN, Qualitative Theorie Nichtlinearer Stochastischer Systeme. Dissertation, Universität Bremen (1980).
  8. H. NIJMEIJER AND A.J. VAN DER SCHAFT, Nonlinear Dynamical Control Systems. Springer-Verlag (1990).
  9. P. SAINT-PIERRE, Approximation of the viability kernel. Appl. Math. Optim. 29 (1994) 187-209. [CrossRef] [MathSciNet]
  10. height 2pt depth -1.6pt width 23pt, Set-valued numerical analysis for optimal control and differential games (1998) to appear.
  11. D. SZOLNOKI, Berechnung von Viabilitätskernen. Diplomarbeit, Institut für Mathematik, Universität Augsburg, Augsburg (1997).
  12. A. UPPAL, W.H. RAY AND A.B. POORE, On the dynamic behavior of continuous stirred tank reactors. Chem. Engrg. Sci. 19 (1974) 967-985. [CrossRef]