Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 275 - 289
DOI http://dx.doi.org/10.1051/cocv:2001111
Published online 15 August 2002
  1. K. Ammari and M. Tucsnak, Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM: COCV (to appear).
  2. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976).
  3. M. Eller (private communication).
  4. M. Eller, Exact boundary controllability of electromagnetic fields in a general region. Appl. Math. Optim. (to appear).
  5. E. Hendrickson and I. Lasiecka, Numerical approximations and regularization of Riccati equations arising in hyperbolic dynamics with unbounded control operators. Comput. Optim. and Appl. 2 (1993) 343-390. [CrossRef] [MathSciNet]
  6. E. Hendrickson and I. Lasiecka, Finite dimensional approximations of boundary control problems arising in partially observed hyperbolic systems. Dynam. Cont. Discrete Impuls. Systems 1 (1995) 101-142.
  7. V. Komornik, Boundary stabilization, observation and control of Maxwell's equations. Panamer. Math. J. 4 (1994) 47-61. [MathSciNet]
  8. J. Lagnese, Exact boundary controllability of Maxwell's equations in a general region. SIAM J. Control Optim. 27 (1989) 374-388. [CrossRef] [MathSciNet]
  9. J. Lagnese, The Hilbert Uniqueness Method: A retrospective, edited by K.-H. Hoffmann and W. Krabs. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci. 149 (1991).
  10. I. Lasiecka and R. Triggiani, A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations. Proc. Amer. Math. Soc. 104 (1988) 745-755. [MathSciNet]
  11. R. Leis, Initial Boundary Value Problems in Mathematical Physics. B. G. Teubner, Stuttgart (1986).
  12. O. Nalin, Contrôlabilité exacte sur une partie du bord des équations de Maxwell. C. R. Acad. Sci. Paris 309 (1989) 811-815.
  13. K.D. Phung, Contrôle et stabilisation d'ondes électromagnétiques. ESAIM: COCV 5 (2000) 87-137. [CrossRef] [EDP Sciences]
  14. D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52 (1973) 189-211.
  15. M. Tucsnak and G. Weiss, How to get a conservative well-posed linear system out of thin air. Preprint.