Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 333 - 360
DOI http://dx.doi.org/10.1051/cocv:2001113
Published online 15 August 2002
  1. S.A. Avdonin and S.S. Ivanov, Families of Exponentials. Cambridge University Press (1995).
  2. M.C. Delfour, M. Kern, L. Passeron and B. Sevenne, Modelling of a rotating flexible beam, in Control of Distributed Parameter Systems, edited by H.E. Rauch. Pergamon Press, Los Angeles (1986) 383-387.
  3. K.F. Graff, Wave Motion in Elastic Solids. Dover Publications, New York (1991).
  4. M. Gugat, A Newton method for the computation of time-optimal boundary controls of one-dimensional vibrating systems. J. Comput. Appl. Math. 114 (2000) 103-119. [CrossRef] [MathSciNet]
  5. J.U. Kim and Y. Renardy, Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25 (1987) 1417-1429. [CrossRef] [MathSciNet]
  6. W. Krabs, On moment theory and contollability of one-dimensional vibrating systems and heating processes. Springer-Verlag, Heidelberg, Lecture Notes in Control and Informat. Sci. 173 (1992).
  7. W. Krabs, Controllability of a rotating beam. Springer-Verlag, Lecture Notes in Control and Inform. Sci. 185 (1993) 447-458. [CrossRef]
  8. W. Krabs and G.M. Sklyar, On the controllability of a slowly rotating Timoshenko beam. J. Anal. Appl. 18 (1999) 437-448.
  9. M.A. Moreles, A classical approach to uniform null controllability of elastic beams. SIAM J. Control Optim. 36 (1998) 1073-1085. [CrossRef] [MathSciNet]
  10. D.L. Russel, Nonharmonic Fourier series in the control theory of distributed parameter systems. J. Math. Anal. Appl. 18 (1967) 542-560. [CrossRef] [MathSciNet]
  11. M.A. Shubov, Spectral operators generated by Timoshenko beam model. Systems Control Lett. 38 (1999).
  12. S.P. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philos. Mag. (1921) xli.