Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 489 - 498
DOI http://dx.doi.org/10.1051/cocv:2001119
Published online 15 August 2002
  1. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998).
  2. A. Braides and I. Fonseca, Brittle thin films, Preprint CNA-CMU. Pittsburgh (1999).
  3. A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Preprint CNA-CMU. Pittsburgh (1999).
  4. W.F. Brown, Micromagnetics. John Wiley and Sons, New York (1963).
  5. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Springer-Verlag, New York, Lecture Notes in Math. 580 (1977).
  6. B. Dacorogna, Direct methods in Calculus of Variations. Springer-Verlag, Berlin (1989).
  7. B. Dacorogna, I. Fonseca, J. Maly and K. Trivisa, Manifold constrained variational problems. Calc. Var. 9 (1999) 185-206. [CrossRef] [MathSciNet]
  8. G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993).
  9. I. Fonseca and G. Francfort, 3D-2D asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505 (1998) 173-202. [CrossRef] [MathSciNet]
  10. I. Fonseca and G. Francfort, On the inadequacy of the scaling of linear elasticity for 3D-2D asymptotic in a nonlinear setting, Preprint CNA-CMU. Pittsburgh (1999).
  11. I. Fonseca and S. Müller, Quasi-convex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081-1098. [CrossRef] [MathSciNet]
  12. G. Gioia and R.D. James, Micromagnetics of very thin films. Proc. Roy. Soc. Lond. Ser. A 453 (1997) 213-223. [CrossRef]
  13. C.B. Morrey, Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. [CrossRef] [MathSciNet]
  14. C.B. Morrey, Multiple integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966).