Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 553 - 560
DOI http://dx.doi.org/10.1051/cocv:2001122
Published online 15 August 2002
  1. L. Amerio and G. Prouse, Abstract almost periodic functions and functional equations. Van Nostrand, New-York (1971).
  2. J.M. Ball and M. Slemrod, Feedback stabilization of distributed semilinear control systems. Appl. Math. Optim. 5 (1979) 169-179. [CrossRef] [MathSciNet]
  3. M. Biroli, Sur les solutions bornées et presque périodiques des équations et inéquations d'évolution. Ann. Math. Pura Appl. 93 (1972) 1-79. [CrossRef]
  4. T. Cazenave and A. Haraux, Propriétés oscillatoires des solutions de certaines équations des ondes semi-linéaires. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 449-452.
  5. T. Cazenave and A. Haraux, Oscillatory phenomena associated to semilinear wave equations in one spatial dimension. Trans. Amer. Math. Soc. 300 (1987) 207-233. [CrossRef] [MathSciNet]
  6. T. Cazenave and A. Haraux, Some oscillatory properties of the wave equation in several space dimensions. J. Funct. Anal. 76 (1988) 87-109. [CrossRef] [MathSciNet]
  7. T. Cazenave, A. Haraux and F.B. Weissler, Une équation des ondes complètement intégrable avec non-linéarité homogène de degré 3. C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 237-241.
  8. T. Cazenave, A. Haraux and F.B. Weissler, A class of nonlinear completely integrable abstract wave equations. J. Dynam. Differential Equations 5 (1993) 129-154. [CrossRef] [MathSciNet]
  9. T. Cazenave, A. Haraux and F.B. Weissler, Detailed asymptotics for a convex hamiltonian system with two degrees of freedom. J. Dynam. Differential Equations 5 (1993) 155-187. [CrossRef] [MathSciNet]
  10. F. Conrad and M. Pierre, Stabilization of second order evolution equations by unbounded nonlinear feedbacks. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 485-515.
  11. A. Haraux, Comportement à l'infini pour une équation des ondes non linéaire dissipative. C. R. Acad. Sci. Paris Sér. I Math. 287 (1978) 507-509.
  12. A. Haraux, Comportement à l'infini pour certains systèmes dissipatifs non linéaires. Proc. Roy. Soc. Edinburgh Ser. A 84 (1979) 213-234.
  13. A. Haraux, Stabilization of trajectories for some weakly damped hyperbolic equations. J. Differential Equations 59 (1985) 145-154. [CrossRef] [MathSciNet]
  14. A. Haraux and V. Komornik, Oscillations of anharmonic Fourier series and the wave equation. Rev. Mat. Iberoamericana 1 (1985) 57-77. [MathSciNet]
  15. A. Haraux, Semi-linear hyperbolic problems in bounded domains, Mathematical Reports Vol. 3, Part 1 , edited by J. Dieudonné. Harwood Academic Publishers, Gordon & Breach (1987).
  16. A. Haraux, Systèmes dynamiques dissipatifs et applications, R.M.A. 17, edited by Ph. Ciarlet and J.L. Lions. Masson, Paris (1990).
  17. A. Haraux, Strong oscillatory behavior of solutions to some second order evolution equations, Publication du Laboratoire d'Analyse Numérique 94033, 10 p.
  18. B.M. Levitan and V.V. Zhikov, Almost periodic functions and differential equations. Cambridge University Press, Cambridge (1982).
  19. M. Slemrod, Weak asymptotic decay via a relaxed invariance principle for a wave equation with nonlinear, nonmonotone damping. Proc. Roy. Soc. Edinburgh Ser. A 113 (1989) 87-97.
  20. J. Vancostenoble, Weak asymptotic stability of second order evolution equations by nonlinear and nonmonotone feedbacks. SIAM J. Math. Anal. 30 (1998) 140-154. [CrossRef]
  21. J. Vancostenoble, Weak asymptotic decay for a wave equation with weak nonmonotone damping, 17p (to appear).
  22. G.F. Webb, Compactness of trajectories of dynamical systems in infinite dimensional spaces. Proc. Roy. Soc. Edinburgh Ser. A 84 (1979) 19-34.