Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 561 - 592
DOI http://dx.doi.org/10.1051/cocv:2001123
Published online 15 August 2002
  1. S. Alinhac, Non unicité du problème de Cauchy. Ann. Math. 117 (1983) 77-108. [CrossRef] [MathSciNet]
  2. S. Alinhac et M.S. Baouendi, A non uniqueness result for operators of principal type. Math. Z. 220 (1995) 561-568. [CrossRef] [MathSciNet]
  3. D. Ang, M. Ikehata, D. Trong et M. Yamampto, Unique continuation for a stationary isotropic Lamé system with variable coefficients. Comm. Partial Differential Equations 23 (1998) 371-385. [MathSciNet]
  4. B. Dehman et L. Robbiano, La propriété du prolongement unique pour un système elliptique. Le système de Lamé. J. Math. Pures Appl. 72 (1993) 475-492. [MathSciNet]
  5. M. Eller, V. Isakov, G. Nakamura et D. Tataru, Uniqueness and Stability in the Cauchy Problem for Maxwell' and elasticity systems. Preprint.
  6. L. Hörmander, On the uniqueness of the Cauchy problem under partial analy-ticity assumptions. Preprint (1996).
  7. L. Hörmander, Linear partial differential operators. Springer Verlag, Berlin (1963).
  8. L. Hörmander, The analysis of linear partial differential operators, I-III. Springer Verlag.
  9. V. Isakov, A non hyperbolic Cauchy problem for Formula and its applications to elasticity theory. Comm. Pure Math. Appl. 39 (1986) 747-767. [CrossRef] [MathSciNet]
  10. N. Lerner, Unicité de Cauchy pour des opérateurs faiblement principalement normaux. J. Math. Pures Appl. 64 (1985) 1-11. [MathSciNet]
  11. J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation des systèmes distribués. Masson, Collection RMA, Paris (1988).
  12. L. Robbiano, Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques. Comm. Partial Differential Equations 16 (1991) 789-800. [CrossRef] [MathSciNet]
  13. L. Robbiano et C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients. Invent. Math. 131 (1998) 493-539. [CrossRef] [MathSciNet]
  14. J. Sjöstrand, Singularités analytiques microlocales. Astérisque 95 (1982).
  15. D. Tataru, Unique continuation for solutions to P.D.E's between Hörmander's theorem and Holmgren's theorem. Comm. on P.D.E. 20 (1995) 855-884. [CrossRef]
  16. C. Zuily, Lectures on uniqueness and non uniqueness in the Cauchy probem. Birkhäuser, Progress in Math. 33 (1983).