Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 649 - 674
DOI http://dx.doi.org/10.1051/cocv:2001127
Published online 15 August 2002
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975).
  2. W. Alt, The Lagrange-Newton method for infinite-dimensional optimization problems. Numer. Funct. Anal. Optim. 11 (1990) 201-224. [CrossRef] [MathSciNet]
  3. M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 35 (1997) 1524-1543. [CrossRef] [MathSciNet]
  4. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 5: Evolution Problems I. Springer-Verlag, Berlin (1992).
  5. A.L. Dontchev, Local analysis of a Newton-type method based on partial linearization, in Proc. of the AMS-SIAM Summer Seminar in Applied Mathematics on Mathematics and Numerical Analysis: Real Number Algorithms, edited by J. Renegar, M. Shub and S. Smale. AMS, Lectures in Appl. Math. 32 (1996) 295-306.
  6. A.L. Dontchev, W.W. Hager, A.B. Poore and B. Yang, Optimality, stability, and convergence in optimal control. Appl. Math. Optim. 31 (1995) 297-326. [CrossRef] [MathSciNet]
  7. H. Goldberg and F. Tröltzsch, On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. Optim. Methods Softw. 8 (1998) 225-247. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  8. M. Heinkenschloss and F. Tröltzsch, Analysis of the Lagrange-SQP-Newton Method for the Control of a Phase-Field Equation. Control Cybernet. 28 (1999) 177-211. [MathSciNet]
  9. M. Hintermüller, A primal-dual active set algorithm for bilaterally control constrained optimal control problems. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 146 (submitted).
  10. M. Hinze and K. Kunisch, Second order methods for time-dependent fluid flow. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 165 (submitted).
  11. K. Ito and K. Kunisch, Augmented Lagrangian-SQP-Methods for nonlinear optimal control problems of tracking type. SIAM J. Control Optim. 34 (1996) 874-891. [CrossRef] [MathSciNet]
  12. K. Kunisch and A. Rösch, Primal-dual strategy for parabolic optimal control problems. Spezialforschungsbereich F 003, Optimierung und Kontrolle, Projektbereich Optimierung und Kontrolle, Bericht No. 154 (submitted).
  13. H.V. Ly, K.D. Mease and E.S. Titi, Some remarks on distributed and boundary control of the viscous Burgers equation. Numer. Funct. Anal. Optim. 18 (1997) 143-188. [CrossRef] [MathSciNet]
  14. S.M. Robinson, Strongly regular generalized equations. Math. Oper. Res. 5 (1980) 43-62. [CrossRef] [MathSciNet]
  15. R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam, Stud. Math. Appl. (1979).
  16. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer-Verlag, New York, Appl. Math. Sci. 68 (1988).
  17. F. Tröltzsch, Lipschitz stability of solutions to linear-quadratic parabolic control problems with respect to perturbations. Dynam. Contin. Discrete Impuls. Systems 7 (2000) 289-306. [MathSciNet]
  18. F. Tröltzsch, On the Lagrange-Newton-SQP method for the optimal control of semilinear parabolic equations. SIAM J. Control Optim. 38 (1999) 294-312. [CrossRef] [MathSciNet]
  19. S. Volkwein, Mesh-Independence of an Augmented Lagrangian-SQP Method in Hilbert Spaces and Control Problems for the Burgers Equation, Ph.D. Thesis. Department of Mathematics, Technical University of Berlin (1997).
  20. S. Volkwein, Augmented Lagrangian-SQP techniques and optimal control problems for the stationary Burgers equation. Comput. Optim. Appl. 16 (2000) 57-81. [CrossRef] [MathSciNet]
  21. S. Volkwein, Distributed control problems for the Burgers equation. Comput. Optim. Appl. 18 (2001) 133-158.
  22. S. Volkwein, Optimal control of a phase-field model using the proper orthogonal decomposition. Z. Angew. Math. Mech. 81 (2001) 83-97. [CrossRef] [MathSciNet]