Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 39 - 72
DOI http://dx.doi.org/10.1051/cocv:2001103
Published online 15 August 2002
  1. V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Optimal control. Consultants Bureau, New York (1987).
  2. D. Chae, O.Yu. Imanuvilov and S.M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynam. Control Systems 2 (1996) 449-483. [CrossRef] [MathSciNet]
  3. J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier-Slip boundary conditions. ESAIM: COCV 1 (1996) 35-75. [CrossRef] [EDP Sciences]
  4. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. [MathSciNet]
  5. J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 271-276.
  6. J.-M. Coron and A.V. Fursikov, Global exact controllability of the 2-D Navier-Stokes equations on manifold without boundary. Russian J. Math. Phys. 4 (1996) 1-20.
  7. C. Fabre, Résultats d'unicité pour les équations de Stokes et applications au contrôle. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 1191-1196.
  8. C. Fabre and G. Lebeau, Prolongement unique des solutions de l'équation de Stokes. Comm. Partial Differential Equations 21 (1996) 573-596. [CrossRef] [MathSciNet]
  9. A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary. Sb. Math. 187 (1996) 1355-1390. [CrossRef] [MathSciNet]
  10. A.V. Fursikov and O.Yu. Imanuvilov, Local exact boundary controllability of the Boussinesq equation. SIAM J. Control Optim. 36 (1988) 391-421. [CrossRef] [MathSciNet]
  11. A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of the Navier-Stokes Equations. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 275-280.
  12. A.V. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations, Lecture notes series (1996), no. 34 SNU, Seoul.
  13. A.V. Fursikov and O.Yu. Imanuvilov, On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse 11 (1993) 205-232.
  14. A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier-Stokes equations and the Boussinesq system. Russian Math. Surveys 54 (1999) 565-618. [CrossRef] [MathSciNet]
  15. O. Glass, Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire sur les Équations aux Dérivées Partielles, 1997-1998, Exp No XV. École Polytechnique, Palaiseau (1998) 11.
  16. O. Glass, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3. C. R. Acad. Sci. Paris Sér. I Math. (1997) 987-992.
  17. L. Hörmander, Linear partial differential operators. Springer-Verlag, Berlin (1963).
  18. T. Horsin, On the controllability of the Burgers equations. ESAIM: COCV 3 (1998) 83-95. [CrossRef] [EDP Sciences]
  19. O.Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations. ESAIM: COCV 3 (1998) 97-131. [CrossRef] [EDP Sciences]
  20. O.Yu. Imanuvilov, Boundary controllability of parabolic equations. Sb. Math. 186 (1995) 879-900. [CrossRef] [MathSciNet]
  21. O.Yu. Imanuvilov, Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions. Lecture Notes in Phys. 491 (1977) 148-168. [CrossRef]
  22. O.Yu. Imanuvilov and M. Yamamoto, On Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, UTMS 98-46.
  23. A.N. Kolmogorov and S.V. Fomin, Introductory real analysis. Dover Publications, INC, New York (1996).
  24. O.A. Ladyzenskaja and N.N. Ural'ceva, Linear and quasilinear equations of elliptic type. Academic Press, New York (1968).
  25. J.L. Lions, Contrôle des systèmes distribués singuliers. Gauthier-Villars, Paris (1983).
  26. J.L. Lions, Optimal control of systems governed by partial differential equations. Springer-Verlag (1971).
  27. J.-L. Lions, Are there connections between turbulence and controllability?, in 9e Conférence internationale de l'INRIA. Antibes (1990).
  28. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems. Springer-Verlag, Berlin (1971).
  29. M. Taylor, Pseudodifferential operators. Princeton Univ. Press (1981).
  30. M. Taylor, Pseudodifferential operators and Nonlinear PDE. Birkhäuser (1991).
  31. R. Temam, Navier-Stokes equations. North-Holland Publishing Company, Amsterdam (1979).