Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 97 - 118
DOI http://dx.doi.org/10.1051/cocv:2001105
Published online 15 August 2002
  1. C. Alvarez, Problemas de frontiera libre en teoría de lubrificación. Ph.D. Thesis, Complutense University of Madrid (1986).
  2. V. Barbu, Necessary conditions for nonconvex distributed control problems governed by elliptic variational inequalities. J. Math. Anal. Appl. 80 (1981) 566-598. [CrossRef] [MathSciNet]
  3. V. Barbu, Necessary conditions for distributed control problems governed by parabolic variational inequalities. SIAM. J. Control Optim. 19 (1981) 64-86. [CrossRef] [MathSciNet]
  4. G. Bayada et M. Chambat, Sur quelques modélisation de la zone de cavitation en lubrification hydrodynamique. J. Méc. Théor. Appl. 5 (1986) 703-729.
  5. G. Bayada et M. Chambat, Existence and uniqueness for a lubrification problem with non regular conditions on the free boundary. Boll. Un Math. Ital. 6 (1984) 543-547.
  6. G. Bayada et M. El Alaoui Talibi, Control by coefficients in a variational inequality: The inverse elastohydrodynamic lubrication problem. Nonlinear Analysis: Real World Applications 1 (2000) 315-328. [CrossRef] [MathSciNet]
  7. G. Bayada et M. El Alaoui Talibi, Une méthode du type caractérisitique pour la résolution d'un problème de lubrification hydrodynamique en régime transitoire. ESAIM: M2AN 25 (1991) 395-423.
  8. A. Bensoussan, J.L. Lions et G. Papanicolau, Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978).
  9. H. Brezis, Analyse fonctionnelle Théorie et Application. Masson, Paris (1983).
  10. A. Cameron, Basic Lubrication Theory. John Whiley & Sons (1981).
  11. E. Casas et F. Bonnans, An extension of pontryagin's principle for state-constrainted optimal control of semilinear elliptic equations and variational inequalities. SIAM J. Control Optim. 33 (1995) 274-298. [CrossRef] [MathSciNet]
  12. E. Casas et F. Bonnans, Optimal control of semilinear multistate systems with state constraints. SIAM J. Control Optim. 27 (1989) 446-455. [CrossRef] [MathSciNet]
  13. E. Casas, O. Kavian et J.P. Puel, Optimal control of an ill-posed elliptic semilinear equation whith an exponential non linearity. ESAIM: COCV 3 (1998) 361-380. [CrossRef] [EDP Sciences]
  14. G. Elrod H. et M.L. Adams, A computer program for cavitation, in st LEEDS LYON symposium on cavitation and related phenomena in lubrication, I.M.E. (1974).
  15. D. Gilbarg et N.S. Trudinger, Elliptic Partial Differential Equations of second Order. Springer-Verlag (1983).
  16. O.A. Ladyzhenskaya et N.N. Ural'tseva, Linear and quasilinear elliptic equations. Academic Press (1968).
  17. M.H. Meurisse, Solution of the inverse problem in hydrodynamic lubrication, in Proc. of the X Lyon Leeds International Symposium (1983) 104-107.
  18. J.F. Rodrigues, Obstacle problems in mathematical physics. North-Holland, Amsterdam (1978).
  19. G. Stampachia et D. Kinderleher, An introduction to variational inequalities and applications. Academic Press (1980).