Free access
Issue
ESAIM: COCV
Volume 6, 2001
Page(s) 183 - 199
DOI http://dx.doi.org/10.1051/cocv:2001107
Published online 15 August 2002
  1. C. Castro and E. Zuazua, Boundary controllability of a hybrid system consisting in two flexible beams connected by a point mass. SIAM J. Control Optim. 36 (1998) 1576-1595. [CrossRef] [MathSciNet]
  2. S. Hanssen and E. Zuazua, Exact controllability and stabilization of a vibration string with an interior point mass. SIAM J. Control Optim. 33 (1995) 1357-1391. [CrossRef] [MathSciNet]
  3. W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity. Arch. Rational Mech. Anal. 103 (1988) 193-236. [MathSciNet]
  4. W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping. Ann. Mat. Pura Appl. 152 (1988) 281-330. [CrossRef] [MathSciNet]
  5. J.L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Vol. I. Masson, Paris (1988).
  6. J.L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems. SIAM Rev. 30 (1988) 1-68. [CrossRef] [MathSciNet]
  7. L. Markus and Y.C. You, Dynamical boundary control for elastic Al plates of general shape. SIAM J. Control Optim. 31 (1993) 983-992. [CrossRef] [MathSciNet]
  8. S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control noise. SIAM J. Control Optim. 35 (1987) 1614-1637. [CrossRef] [MathSciNet]
  9. A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York (1983).
  10. B. Rao, Stabilisation du modèle SCOLE par un contrôle frontière a priori borné. C. R. Acad. Sci. Paris Sér. I Math. 316 (1993) 1061-1066.
  11. B. Rao, Uniform stabilization and exact controllability of Kirchhoff plates with dynamical boundary controls.
  12. B. Rao, Uniform stabilization of a hybrid system of elasticity. SIAM J. Control Optim. 33 (1995) 440-454. [CrossRef] [MathSciNet]
  13. B. Rao, Contrôlabilité exacte frontière d'un système hybride en élasticité par la méthode HUM. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 889-894.
  14. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (IV) CXLVI (1987) 65-96.
  15. M. Slemrod, Feedback stabilization of a linear system in Hilbert space with an a priori bounded control. Math. Control Signals Systems (1989) 265-285.
  16. E. Zuazua, Contrôlabilité exacte en un temps arbitrairement petit de quelques modèles de plaques, in Lions [5], 465-491.