 S. Anita and V. Barbu, Null controllability of nonlinear convective heat equations. ESAIM: COCV 5 (2000) 157173. [CrossRef] [EDP Sciences]
 A. Baciotti, Local Stabilizability of Nonlinear Control Systems. World Scientific, Singapore, Series on Advances in Mathematics and Applied Sciences 8 (1992).
 J.M. Ball and M. Slemrod, Feedback stabilization of semilinear control systems. Appl. Math. Opt. 5 (1979) 169179. [CrossRef] [MathSciNet]
 J.M. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semilinear control systems. Comm. Pure. Appl. Math. 32 (1979) 555587. [CrossRef] [MathSciNet]
 J.M. Ball, J.E. Mardsen and M. Slemrod, Controllability for distributed bilinear systems. SIAM J. Control Optim. (1982) 575597.
 V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Opt. 42 (2000) 7389. [CrossRef] [MathSciNet]
 M.E. Bradley, S. Lenhart and J. Yong, Bilinear optimal control of the velocity term in a Kirchhoff plate equation. J. Math. Anal. Appl. 238 (1999) 451467. [CrossRef] [MathSciNet]
 E. FernándezCara, Null controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87103. [CrossRef] [EDP Sciences] [MathSciNet]
 E. FernándezCara and E. Zuazua, Controllability for blowing up semilinear parabolic equations. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 199204.
 L.A. Fernández, Controllability of some semilnear parabolic problems with multiplicativee control, a talk presented at the Fifth SIAM Conference on Control and its applications, held in San Diego, July 1114, 2001 (in preparation).
 A. Fursikov and O. Imanuvilov, Controllability of evolution equations. Res. Inst. Math., GARC, Seoul National University, Lecture Note Ser. 34 (1996).
 J. Henry, Étude de la contrôlabilité de certaines équations paraboliques non linéaires, Thèse d'état. Université Paris VI (1978).
 A.Y. Khapalov, Approximate controllability and its wellposedness for the semilinear reactiondiffusion equation with internal lumped controls. ESAIM: COCV 4 (1999) 8398. [CrossRef] [EDP Sciences]
 A.Y. Khapalov, Global approximate controllability properties for the semilinear heat equation with superlinear term. Rev. Mat. Complut. 12 (1999) 511535. [MathSciNet]
 A.Y. Khapalov, A class of globally controllable semilinear heat equations with superlinear terms. J. Math. Anal. Appl. 242 (2000) 271283. [CrossRef] [MathSciNet]
 A.Y. Khapalov, Bilinear control for global controllability of the semilinear parabolic equations with superlinear terms, in the Special volume "Control of Nonlinear Distributed Parameter Systems'', dedicated to David Russell, Marcel Dekker, Vol. 218 (2001) 139155.
 A.Y. Khapalov, On bilinear controllability of the parabolic equation with the reactiondiffusion term satisfying Newton's Law, in the special issue of the J. Comput. Appl. Math. dedicated to the memory of J.L. Lions (to appear).
 A.Y. Khapalov, Controllability of the semilinear parabolic equation governed by a multiplicative control in the reaction term: A qualitative approach, Available as Tech. Rep. 017, Washington State University, Department of Mathematics (submitted).
 K. Kime, Simultaneous control of a rod equation and a simple Schrödinger equation. Systems Control Lett. 24 (1995) 301306. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
 O.H. Ladyzhenskaya, V.A. Solonikov and N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type. AMS, Providence, Rhode Island (1968).
 S. Lenhart, Optimal control of convectivediffusive fluid problem. Math. Models Methods Appl. Sci. 5 (1995) 225237. [CrossRef] [MathSciNet]
 S. Müller, Strong convergence and arbitrarily slow decay of energy for a class of bilinear control problems. J. Differential Equations 81 (1989) 5067. [CrossRef] [MathSciNet]
Free access
Issue 
ESAIM: COCV
Volume 7, 2002



Page(s)  269  283  
DOI  http://dx.doi.org/10.1051/cocv:2002011  
Published online  15 September 2002 