Free access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 285 - 289
DOI http://dx.doi.org/10.1051/cocv:2002012
Published online 15 September 2002
  1. L. Ambrosio, C. De Lellis and C. Mantegazza, Line energies for gradient vector fields in the plane. Calc. Var. Partial Differential Equations 9 (1999) 327-355. [CrossRef] [MathSciNet]
  2. P. Aviles and Y. Giga, A mathematical problem related to the physical theory of liquid crystal configurations. Proc. Centre Math. Anal. Austral. Nat. Univ. 12 (1987) 1-16.
  3. P. Aviles and Y. Giga, On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type energy for gradient fields. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 1-17. [MathSciNet]
  4. C. De Lellis, Energie di linea per campi di gradienti, Ba. D. Thesis. University of Pisa (1999).
  5. A. De Simone, R.W. Kohn, S. Müller and F. Otto, A compactness result in the gradient theory of phase transition. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 833-844. [CrossRef] [MathSciNet]
  6. P.-E. Jabin and B. Perthame, Compactness in Ginzburg-Landau energy by kinetic averaging. Comm. Pure Appl. Math. 54 (2001) 1096-1109. [CrossRef] [MathSciNet]
  7. W. Jin, Singular perturbation and the energy of folds, Ph.D. Thesis. Courant Insitute, New York (1999).
  8. W. Jin and R.V. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355-390. [CrossRef] [MathSciNet]
  9. M. Ortiz and G. Gioia, The morphology and folding patterns of buckling driven thin-film blisters. J. Mech. Phys. Solids 42 (1994) 531-559. [CrossRef] [MathSciNet]