Free access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 335 - 377
DOI http://dx.doi.org/10.1051/cocv:2002015
Published online 15 September 2002
  1. Z. Artstein and E.F. Infante, On the asymptotic stability of oscillators with unbounded damping. Quart. Appl. Math. 34 (1976) 195-199. [MathSciNet]
  2. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. [CrossRef] [MathSciNet]
  3. C. Bardos, G. Lebeau and J. Rauch, Un exemple d'utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques, Nonlinear hyperbolic equations in applied sciences. Rend. Sem. Mat. Univ. Politec. Torino 1988, Special Issue (1989) 11-31.
  4. A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations. Comm. Pure Appl. Math. 33 (1980) 707-725. [CrossRef] [MathSciNet]
  5. A. Benaddi and B. Rao, Energy decay rate of wave equations with indefinite damping. J. Differential Equations 161 (2000) 337-357. [CrossRef] [MathSciNet]
  6. C. Castro and S.J. Cox, Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim. 39 (2001) 1748-1755. [CrossRef] [MathSciNet]
  7. P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping. J. Differential Equations 132 (1996) 338-352. [CrossRef] [MathSciNet]
  8. A. Haraux, Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps, Publications du Laboratoire d'Analyse numérique. Université Pierre et Marie Curie (1988).
  9. A. Haraux, A generalized internal control for the wave equation in a rectangle. J. Math. Anal. Appl. 153 (1990) 190-216. [CrossRef] [MathSciNet]
  10. W.A. Harris Jr., P. Pucci and J. Serrin, Asymptotic behavior of solutions of a nonstandard second order differential equation. Differential Integral Equations 6 (1993) 1201-1215. [MathSciNet]
  11. L. Hatvani, On the stability of the zero solution of second order nonlinear differential equations. Acta Sci. Math. 32 (1971) 1-9.
  12. L. Hatvani and V. Totik, Asymptotic stability of the equilibrium of the damped oscillator. Differential Integral Equation 6 (1993) 835-848.
  13. L. Hatvani, T. Krisztin, V. Totik and Vilmos, A necessary and sufficient condition for the asymptotic stability of the damped oscillator. J. Differential Equations 119 (1995) 209-223. [CrossRef] [MathSciNet]
  14. S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184-215. [CrossRef] [MathSciNet]
  15. V. Komornik and E. Zuazua A direct method for boundary stabilization of the wave equation. J. Math. Pures Appl. 69 (1990) 33-54.
  16. V. Komornik, Exact Controllability and Stabilization. The Multiplier Method. John Wiley, Chicester and Masson, Paris (1994).
  17. J. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Differential Equations 50 (1983) 163-182. [CrossRef] [MathSciNet]
  18. J. Lagnese, Note on boundary stabilization of wave equation. SIAM J. Control Optim. 26 (1988) 1250-1256. [CrossRef] [MathSciNet]
  19. I. Lasiecka and R. Triggiani, Uniform exponential decay in a bounded region with Formula -feedback control in the Dirichlet boundary condition. J. Differential Equations 66 (1987) 340-390.
  20. I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions. Appl. Math. Optim. 25 (1992) 189-224. [CrossRef] [MathSciNet]
  21. J.-L. Lions, Contrôlabilité exacte de systèmes distribués. C. R. Acad. Sci. Paris 302 (1986) 471-475.
  22. J.-L. Lions, Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués. Masson, RMA 8 (1988).
  23. J.-L. Lions, Exact controllability, stabilization adn perturbations for distributd systems. SIAM Rev. 30 (1988) 1-68. [CrossRef] [MathSciNet]
  24. S. Marakuni, Asymptotic behavior of solutions of one-dimensional damped wave equations. Comm. Appl. Nonlin. Anal. 1 (1999) 99-116.
  25. P. Martinez, Precise decay rate estimates for time-dependent dissipative systems. Israël J. Math. 119 (2000) 291-324. [CrossRef] [MathSciNet]
  26. P. Martinez and J. Vancostenoble, Exact controllability in ``arbitrarily short time" of the semilinear wave equation. Discrete Contin. Dynam. Systems (to appear).
  27. M. Nakao, On the time decay of solutions of the wave equation with a local time-dependent nonlinear dissipation. Adv. Math. Sci. Appl. 7 (1997) 317-331. [MathSciNet]
  28. K. Petersen, Ergodic Theory. Cambridge University Press, Cambridge, Studies in Adv. Math. 2 (1983).
  29. P. Pucci and J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems. Acta Math. 170 (1993) 275-307. [CrossRef] [MathSciNet]
  30. P. Pucci and J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems, II. J. Differential Equations 113 (1994) 505-534. [CrossRef] [MathSciNet]
  31. P. Pucci and J. Serrin, Asymptotic stability for intermittently controlled nonlinear oscillators. SIAM J. Math. Anal. 25 (1994) 815-835. [CrossRef] [MathSciNet]
  32. P. Pucci and J. Serrin, Asymptotic stability for nonautonomous dissipative wave systems. Comm. Pure Appl. Math. XLIX (1996) 177-216.
  33. P. Pucci and J. Serrin, Local asymptotic stability for dissipative wave systems. Israël J. Math. 104 (1998) 29-50. [CrossRef] [MathSciNet]
  34. R.A. Smith, Asymptotic stability of x''+a(t)x'+x=0. Quart. J. Math. Oxford (2) 12 (1961) 123-126. [CrossRef]
  35. L.H. Thurston and J.W. Wong, On global asymptotic stability of certain second order differential equations with integrable forcing terms. SIAM J. Appl. Math. 24 (1973) 50-61. [CrossRef] [MathSciNet]
  36. J. Vancostenoble and P. Martinez, Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks. SIAM J. Control Optim. 39 (2000) 776-797. [CrossRef] [MathSciNet]
  37. E. Zuazua, An introduction to the exact controllability for distributed systems, Textos et Notas 44, CMAF. Universidades de Lisboa (1990).