Free access
Issue
ESAIM: COCV
Volume 7, 2002
Page(s) 135 - 155
DOI http://dx.doi.org/10.1051/cocv:2002006
Published online 15 September 2002
  1. H. Brézis, Equations et inéquations nonlinéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble 18 (1968) 115-175. [CrossRef] [MathSciNet]
  2. J. Haslinger and P. Neittaanmäki, Finite element approximation for optimal shape design, theory and applications. Wiley, Chichester (1988).
  3. J. Haslinger, M. Miettinen and P. Panagiotopoulos, Finite element method for hemivariational inequalities. Theory, methods and applications. Kluwer Academic Publishers (1999).
  4. A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities. J. Math. Soc. Japan 29 (1977) 615-631. [CrossRef] [MathSciNet]
  5. N. Kikuchi and J.T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM (1988).
  6. A.B. Levy, Sensitivity of solutions to variational inequalities on Banach Spaces. SIAM J. Control Optim. 38 (1999) 50-60. [CrossRef] [MathSciNet]
  7. A.B. Levy and R.T. Rockafeller, Sensitivity analysis of solutions to generalized equations. Trans. Amer. Math. Soc. 345 (1994) 661-671. [CrossRef] [MathSciNet]
  8. F. Mignot, Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22 (1976) 130-185. [CrossRef]
  9. M. Rao and J. Sokolowski, Sensitivity analysis of Kirchhoff plate with obstacle, Rapports de Recherche, 771. INRIA-France (1987).
  10. M. Rao and J. Sokolowski, Sensitivity analysis of unilateral problems in Formula and applications. Numer. Funct. Anal. Optim. 14 (1993) 125-143. [CrossRef] [MathSciNet]
  11. R.T. Rockafeller, Proto-differentiability of set-valued mappings and its applications in Optimization. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 449-482.
  12. A. Shapiro, On concepts of directional differentiability. J. Optim. Theory Appl. 66 (1990) 477-487. [CrossRef] [MathSciNet]
  13. J. Sokolowski and J.-P. Zolesio, Shape sensitivity analysis of unilateral problems. SIAM J. Math. Anal. 18 (1987) 1416-1437. [CrossRef] [MathSciNet]
  14. J. Sokolowski and J.-P. Zolesio, Shape design sensitivity analysis of plates and plane elastic solids under unilateral constraints. J. Optim. Theory Appl. 54 (1987) 361-382. [CrossRef] [MathSciNet]
  15. J. Sokolowski and J.-P. Zolesio, Introduction to shape optimization - shape sensitivity analysis. Springer-Verlag, Springer Ser. Comput. Math. 16 (1992).
  16. P.W. Ziemer, Weakly differentiable functions. Springer-Verlag, New York (1989).