Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 1 - 30
DOI http://dx.doi.org/10.1051/cocv:2002016
Published online 15 August 2002
  1. G. Allaire, Homogenization and two scale convergence. SIAM 23 (1992) 1482-1518. [CrossRef] [MathSciNet]
  2. G. Allaire and G. Bal, Homogenization of the critically spectral equation in neutron transport. ESAIM: M2AN 33 (1999) 721-746. [CrossRef] [EDP Sciences]
  3. G. Allaire and Y. Capdeboscq, Homogenization of a spectral problem in neutronic multigroup diffusion. Comput. Methods Appl. Mech. Engrg. 187 (2000) 91-117. [CrossRef] [MathSciNet]
  4. G. Allaire and A. Piatnitski, Uniform spectral asymptotics for singularly perturbed locally periodic operators. Com. Partial Differential Equations 27 (2002) 705-725. [CrossRef] [MathSciNet]
  5. P. Anselone, Collectively compact operator approximation theory. Prentice-Hall, Englewood Cliffs, NJ (1971).
  6. G. Bal, Couplage d'équations et homogénéisation en transport neutronique, Ph.D. Thesis. Paris 6 (1997).
  7. height 2pt depth -1.6pt width 23pt, Homogenization of a spectral equation with drift in linear transport. ESAIM: COCV 6 (2001) 613-627. [CrossRef] [EDP Sciences]
  8. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Boundary layer and homogenization of transport processes. Publ. RIMS Kyoto Univ. (1979) 53-157.
  9. Y. Capdeboscq, Homogénéisation des modèles de diffusion en neutronique, Ph.D. Thesis. Paris 6 (1999).
  10. F. Chatelin, Spectral approximation of linear operators. Academic Press (1983).
  11. R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology. Springer Verlag, Berlin (1993).
  12. P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes. Indiana Univ. Math. J. 49 (2000) 1175-1198. [MathSciNet]
  13. J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View. Springer-Verlag, New York, Berlin (1981).
  14. F. Golse, P.L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76 (1988) 110-125. [CrossRef] [MathSciNet]
  15. F. Golse, B. Perthame and R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport. C. R. Acad. Sci. Paris (1985) 341-344.
  16. T. Goudon and A. Mellet, Diffusion approximation in heterogeneous media. Asymptot. Anal. (to appear).
  17. T. Goudon and F. Poupaud, Approximation by homogenization and diffusion of kinetic equations. Comm. Partial Differential Equations 26 (2001) 537-569. [CrossRef] [MathSciNet]
  18. S. Kozlov, Reductibility of quasiperiodic differential operators and averaging. Transc. Moscow Math. Soc. 2 (1984) 101-126.
  19. E. Larsen, Neutron transport and diffusion in inhomogeneous media (1). J. Math. Phys. (1975) 1421-1427.
  20. height 2pt depth -1.6pt width 23pt, Neutron transport and diffusion in inhomogeneous media (2). Nuclear Sci. Engrg. (1976) 357-368.
  21. E. Larsen and J. Keller, Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. (1974) 75-81.
  22. M. Mokhtar-Kharoubi, Les équations de la neutronique, Thèse de Doctorat d'État. Paris XIII (1987).
  23. M. Mokhtar-Kharoubi, Mathematical topics in neutron transport theory. World Scientific Publishing Co. Inc., River Edge, NJ (1997).
  24. A. Piatnitski, Asymptotic behaviour of the ground state of singularly perturbed elliptic equations. Commun. Math. Phys. 197 (1998) 527-551. [CrossRef]
  25. J.E. Potter, Matrix quadratic solutions, J. SIAM Appl. Math. 14 (1966) 496-501. [CrossRef]
  26. D.L. Russel, Mathematics of finite-dimensional control systems, theory and design. Lecture Notes in Pure Appl. Math. 43 (1979).
  27. R. Sentis, Study of the corrector of the eigenvalue of a transport operator. SIAM J. Math. Anal. (1985) 151-166.