Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 195 - 218
DOI http://dx.doi.org/10.1051/cocv:2002057
Published online 15 August 2002
  1. L. Álvarez-Vázquez and A. Martínez, Modelling and control of natural convection in canned foods. IMA J. Appl. Math. 63 (1999) 246-265.
  2. K.H. Baek and S.J. Elliot, Natural algorithms for choosing source locations in active control systems. J. Sound Vibr. 186 (1995) 245-267. [CrossRef]
  3. Beranek and Ver, Noise and vibration control engineering. Principles and applications. John Wiley and Sons, New York (1992).
  4. A. Bermúdez, Mathematical techniques for some environmental problems related to water pollution control, in Mathematics, Climate and Environment, edited by J.I. Díaz, J.-L. Lions. Masson, Paris (1993).
  5. A. Bermúdez and A. Martínez, A state constrained optimal control problem related to the sterilization of canned foods. Automatica. The IFAC Journal 30 (1994) 319-329. [CrossRef]
  6. A. Bermúdez, A. Martínez and C. Rodríguez, Un problème de contrôle ponctuel lié à l'emplacement optimal d'émissaires d'évacuation sous-marine. C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 515-518.
  7. A. Bermúdez, C. Rodríguez and M.A. Vilar, Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal. 11 (1991) 79-97. [CrossRef]
  8. A. Bermúdez and C. Saguez, Optimal control of a Signorini problem. SIAM J. Control Optim. 25 (1987) 576-582. [CrossRef] [MathSciNet]
  9. J.F. Bonnans and E. Casas, Contrôle de systèmes elliptiques semilinéaires comportant des contraintes distribuées sur l'état, in Nonlinear partial differential equations and their applications, edited by H. Brezis and J.-L. Lions. Pitman (1988).
  10. E. Casas, L2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627-632. [CrossRef] [MathSciNet]
  11. E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 24 (1986) 1309-1318. [CrossRef] [MathSciNet]
  12. E. Casas, Pontryagin's principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297-1327. [CrossRef] [MathSciNet]
  13. J.F. Bonnans, An introduction to Newton type algorithms for nonlinearly constrained optimization problems. Birkhauser-Verlag, Basel, Internat. Ser. Numer. Math. 87 (1989) 1-17.
  14. E. Casas and C. Pola , PLCBAS User's Guide VERSION 1.1. Computación 1. Universidad de Cantabria, Santander, Spain (1989).
  15. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysys, Vol. II, edited by P.G. Ciarlet and J.-L. Lions. North-Holand (1991).
  16. E. Di Benedetto, On the local behaviour of solutions of degenerate parabolic equatons with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986) 487-535. [MathSciNet]
  17. I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland, Amsterdam (1976).
  18. P. Gamallo, Contribución al estudio matemático de problemas de simulación y control activo del ruido, Ph. Thesis. Universidade de Santiago de Compostela, Spain (2002).
  19. J. Herskovits, A two stage feasible directions algorithm for nonlinear constrained optimization. Math. Programming 36 (1986) 19-38. [CrossRef] [MathSciNet]
  20. J. Herskovits, A feasible directions interior point technique for nonlinear optimization. J. Optim. Theory Appl. 99 (1998) 121-146. [CrossRef] [MathSciNet]
  21. J.B. Hiriart-Urruty and C. Lemarechal, Convex analysis and Minimization Algorithms. Springer-Verlag, Berlin, Heildelberg (1993).
  22. B. Hu and J. Yong, Pontriagin maximum principle for semilinear and quasilinear parabolic equations with pointwise state constraints. SIAM J. Control Optim. 33 (1995) 1857-1880. [CrossRef] [MathSciNet]
  23. O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uraltseva, Linear and quasilinear equations of parabolic type. Amer. Math. Soc., Providence, Transl. Math. Monogr. 23 (1968).
  24. J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968).
  25. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969).
  26. P.A. Nelson and S.J. Elliot, Active Control of Sound. Academic Press, London (1999).
  27. G.I. Marchuk, Mathematical models in environmental problems. North Holland, Amsterdam (1986).
  28. A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Theoretical and numerical analysis of an optimal control problem related to waste-water treatment. SIAM J. Control Optim. 38 (2000) 1534-1553. [CrossRef] [MathSciNet]
  29. C. Olin Ball and F.C.W. Olson, Sterilization in food technology. Mc Graw Hill, New York (1957).
  30. R.I. Pérez Martín, J.R. Banga and J.M. Gallardo, Simulation of thermal processes in tuna can manufacture. Instituto de Investigaciones Marinas (C.S.I.C.), Vigo, Spain (1989).
  31. E.R. Panier, A.L. Tits and J. Herskovits, A QP-Free, Globally Convergent, Locally Superlinearly Convergent Algorithm for Inequality Constrained Optimization. SIAM J. Control Optim. 26 (1988) 788-810. [CrossRef] [MathSciNet]
  32. R. Scott, Finite element convergence for singular data. Numer. Math. 21 (1973) 317-327. [CrossRef] [MathSciNet]
  33. M.E. Vázquez-Méndez, Contribución a la resolución numérica de modelos para el estudio de la contaminación de aguas. Master thesis. Dept. Matemática Aplicada. Univ. Santiago de Compostela, Spain (1992).