Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 441 - 466
DOI http://dx.doi.org/10.1051/cocv:2002037
Published online 15 August 2002
  1. A. Babin, A. Mahalov and B. Nicolaenko, Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Indiana Univ. Math. J. 48 (1999) 1133-1176. [MathSciNet]
  2. A. Babin, A. Mahalov and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. European J. Mech. B Fluids 15 (1996) 291-300. [MathSciNet]
  3. J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Fluids with anisotropic viscosity. Modél. Math. Anal. Numér. 34 (2000) 315-335. [CrossRef]
  4. J.-Y. Chemin, B. Desjardins, I. Gallagher and E. Grenier, Anisotropy and dispersion in rotating fluids. Preprint of Orsay University.
  5. B. Desjardins, E. Dormy and E. Grenier, Stability of mixed Ekman-Hartmann boundary layers. Nonlinearity 12 (1999) 181-199. [CrossRef] [MathSciNet]
  6. I. Gallagher, Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl. 77 (1998) 989-1054. [CrossRef] [MathSciNet]
  7. H.P. Greenspan, The theory of rotating fluids, Reprint of the 1968 original. Cambridge University Press, Cambridge-New York, Cambridge Monogr. Mech. Appl. Math. (1980).
  8. E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477-498. [CrossRef] [MathSciNet]
  9. E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations 22 (1997) 953-975. [MathSciNet]
  10. N. Masmoudi, Ekman layers of rotating fluids: The case of general initial data. Comm. Pure Appl. Math. 53 (2000) 432-483. [CrossRef] [MathSciNet]
  11. Pedlovsky, Geophysical Fluid Dynamics. Springer-Verlag (1979).