Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 827 - 862
DOI http://dx.doi.org/10.1051/cocv:2002025
Published online 15 August 2002
  1. J. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization of distributed semi-linear control systems. Comm. Pure Appl. Math. 37 (1979) 555-587. [CrossRef] [MathSciNet]
  2. E. Crépeau, Exact Controllability of the Boussinesq Equation on a Bounded Domain. Adv. Differential Equations (to appear).
  3. A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457-465. [MathSciNet]
  4. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41 (1967) 367-379. [CrossRef] [MathSciNet]
  5. J.A. Infante and E. Zuazua, Boundary observability for the space semi-discretizations of the 1-d wave equation. Math. Model. Numer. Anal. 33 (1999) 407-438. [CrossRef] [EDP Sciences] [MathSciNet]
  6. E. Isaacson and H.B. Keller, Analysis of numerical methods. John Wiley and Sons (1966).
  7. V. Komornik, Exact controllability and stabilization: The multiplier method. Masson and John Wiley, RAM 36 (1994).
  8. G. Lebeau, Contrôle de l' équation Schrödinger. J. Math. Pures Appl. 71 (1992) 267-291. [MathSciNet]
  9. L. León, Controle Exato da Equaç ao da Viga 1-D Semi-discretizada no Espaço por Diferenças Finitas, Ph.D. Thesis. Instituto de Matemática, Universidade Federal de Rio de Janeiro (2001).
  10. J.L. Lions, Contrôlabilité exacte, stabilisation et perturbations de systèmes distribués, Tome 1. Masson, RMA 8, Paris (1988).
  11. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vols. 1 and 2. Dunod, Paris (1968).
  12. S. Micu, Uniform Boundary Controllability of a Semi-Discrete 1-D Wave Equation. Numer. Math. (to appear).
  13. S. Micu and E. Zuazua, Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Control Optim. 35 (1997) 1614-1637. [CrossRef] [MathSciNet]
  14. J. Simon, Compact sets in the space LP(0,T,B). Ann. Mat. Pura Appl. CXLVI (1987) 65-96.
  15. J.C. Strikwerda, Finite difference schemes and partial differential equation. Chapman and Hall (1995).
  16. J.W. Thomas, Numerical partial differential equations; finite difference methods. Springer, Texts Appl. Math. 22 (1995).
  17. R.M. Young, An introduction to nonharmonic Fourier series. Academic Press, Pure Appl. Math. A Series of Monographs and Textbooks (1980).
  18. E. Zuazua, Boundary observability for the finite space semi-discretization of the 2-d wave equation in the square. J. Math. Pures Appl. 78 (1999) 523-563. [CrossRef] [MathSciNet]
  19. E. Zuazua, Contrôlabilité exacte en un temps arbitrairement petit de quelques modèles de plaques. Appendix I in [] (1988) 465-491.