Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 885 - 906
DOI http://dx.doi.org/10.1051/cocv:2002053
Published online 15 August 2002
  1. G. Allaire, Homogenization of the Stokes flow in a connected porous medium. Asymptot. Anal. 2 (1989) 203-222.
  2. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. [CrossRef] [MathSciNet]
  3. G. Allaire, Homogenization of the unsteady Stokes equations in porous media, in Progress in partial differential equations: Calculus of variations, applications, Pont-à-Mousson, 1991. Longman Sci. Tech., Harlow (1992) 109-123.
  4. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland Publishing Co., Amsterdam (1978).
  5. M.E. BogovskiFormula , Solutions of some problems of vector analysis, associated with the operators Formula and Formula , in Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk (1980) 5-40, 149.
  6. L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31 (1961) 308-340. [MathSciNet]
  7. H. Darcy, Les fontaines publiques de la ville de Dijon. Dalmont Paris (1856).
  8. J.I. Díaz, Two problems in homogenization of porous media, in Proc. of the Second International Seminar on Geometry, Continua and Microstructure, Getafe, 1998, Vol. 14 (1999) 141-155.
  9. E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carolin. 42 (2001) 83-98. [MathSciNet]
  10. G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Vol. I. Springer-Verlag, New York (1994). Linearized steady problems.
  11. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969).
  12. J.-L. Lions, Some methods in the mathematical analysis of systems and their control. Kexue Chubanshe (Science Press), Beijing (1981).
  13. P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1. The Clarendon Press Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications.
  14. P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 2. The Clarendon Press Oxford University Press, New York (1998). Compressible models, Oxford Science Publications.
  15. R. Lipton and M. Avellaneda, Darcy's law for slow viscous flow past a stationary array of bubbles. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 71-79. [MathSciNet]
  16. N. Masmoudi (in preparation).
  17. A. Mikelic, Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary. Ann. Mat. Pura Appl. (4) 158 (1991) 167-179. [CrossRef] [MathSciNet]
  18. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. [CrossRef] [MathSciNet]
  19. G. Nguetseng, Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990) 1394-1414. [CrossRef] [MathSciNet]
  20. E. Sánchez-Palencia, Nonhomogeneous media and vibration theory. Springer-Verlag, Berlin (1980).
  21. L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Sánchez-Palencia (1980) 368-377.
  22. R. Temam, Navier-Stokes equations and nonlinear functional analysis. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, Second Edition (1995).