Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 941 - 963
DOI http://dx.doi.org/10.1051/cocv:2002043
Published online 15 August 2002
  1. W. Eckhaus, Asymptotic analysis of singular perturbations. North-Holland, Amsterdam (1979).
  2. I.M. Guelfand and G.E. Chilov, Les distributions. Dunod, Paris (1962).
  3. P. Gérard and E. Sanchez-Palencia, Sensitivity phenomena for certain thin elastic shells with edges. Math. Meth. Appl. Sci. 23 (2000) 379-399. [CrossRef]
  4. A.M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems. Amer. Math. Soc. (1991).
  5. P. Karamian and J. Sanchez-Hubert, Boundary layers in thin elastic shells with developable middle surface. Eur. J. Mech., A/Solids 21 (2002) 13-47.
  6. P. Karamian, J. Sanchez-Hubert and E. Sanchez-Palencia, Propagation of singularities and structure of the layers in shells. Hyperbolic case. Comp. and Structures (to appear).
  7. J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal. Springer, Berlin (1973).
  8. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968).
  9. J.-L. Lions and E. Sanchez-Palencia, Sensitivity of certain constrained systems and application to shell theory. J. Math. Pures Appl. 79 (2000) 821-838. [CrossRef] [MathSciNet]
  10. E. Sanchez-Palencia, On a singular perturbation going out of the energy space. J. Math. Pures. Appl. 79 (2000) 591-602. [CrossRef] [MathSciNet]
  11. E. Sanchez-Palencia, Singular perturbations going out of the energy space. Layers in elliptic and parabolic cases, in Proc. of the 4th european Conference on Elliptic and Parabolic Problems. Rolduc-Gaeta, edited by Bemelmans et al. World Scientific Press (2002).
  12. M.I. Vishik and L. Lusternik, Regular degenerescence and boundary layer for linear differential equations with small parameter.Usp. Mat. Nauk 12 (1957) 1-122.