Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 965 - 1005
DOI http://dx.doi.org/10.1051/cocv:2002039
Published online 15 August 2002
  1. S. Alama, L. Bronsard and C. Gui, Stationary layered solutions in Formula for an Allen-Cahn system with multiple well potential. Calc. Var. Partial Diff. Eqs. 5 (1997) 359-390. [CrossRef] [MathSciNet]
  2. I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 89-102. [CrossRef] [MathSciNet]
  3. K. Ishige, The gradient theory of the phase transitions in Cahn-Hilliard fluids with Dirichlet boundary conditions. SIAM J. Math. Anal. 27 (1996) 620-637. [CrossRef] [MathSciNet]
  4. T. Kato, Perturbation theory for linear operators. Springer-Verlag, Berlin (1995). Reprint of the 1980 edition.
  5. L.D. Landau and E.M. Lifchitz, Physique statistique. Ellipses (1994).
  6. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). Travaux et Recherches Mathématiques, No. 17.
  7. L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. [CrossRef] [MathSciNet]
  8. L. Modica, Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987) 487-512.
  9. N.C. Owen, J. Rubinstein and P. Sternberg, Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition. Proc. Roy. Soc. London Ser. A 429 (1990) 505-532. [CrossRef] [MathSciNet]
  10. M. Reed and B. Simon, Methods of modern mathematical physics. I. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, Second Edition (1980). Functional analysis.
  11. P. Sternberg, Vector-valued local minimizers of nonconvex variational problems. Rocky Mountain J. Math. 21 (1991) 799-807. Current directions in nonlinear partial differential equations. Provo, UT (1987). [CrossRef] [MathSciNet]
  12. A.I. Volpert, V.A. Volpert and V.A. Volpert, Traveling wave solutions of parabolic systems. American Mathematical Society, Providence, RI, 1994. Translated from the Russian manuscript by James F. Heyda.