Free access
Issue
ESAIM: COCV
Volume 8, 2002
A tribute to JL Lions
Page(s) 513 - 554
DOI http://dx.doi.org/10.1051/cocv:2002050
Published online 15 August 2002
  1. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295-312. [CrossRef] [MathSciNet]
  2. J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris 317 (1993) 271-276.
  3. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. [MathSciNet]
  4. J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1996) 35-75. [CrossRef] [EDP Sciences]
  5. J.-M. Coron and A. Fursikov, Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429-448. [MathSciNet]
  6. R. Courant and D. Hilbert, Methods of mathematical physics, II. Interscience publishers, John Wiley & Sons, New York London Sydney (1962).
  7. L. Debnath, Nonlinear water waves. Academic Press, San Diego (1994).
  8. F. Dubois, N. Petit and P. Rouchon, Motion planning and nonlinear simulations for a tank containing a fluid, ECC 99.
  9. A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier-Stokes and Boussinesq equations. Russian Math. Surveys. 54 (1999) 565-618. [CrossRef] [MathSciNet]
  10. O. Glass, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3. C. R. Acad. Sci. Paris Sér. I 325 (1997) 987-992.
  11. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1-44. [CrossRef] [EDP Sciences]
  12. L. Hörmander, Lectures on nonlinear hyperbolic differential equations. Springer-Verlag, Berlin Heidelberg, Math. Appl. 26 (1997).
  13. Th. Horsin, On the controllability of the Burgers equation. ESAIM: COCV 3 (1998) 83-95. [CrossRef] [EDP Sciences]
  14. J.-L. Lions, Are there connections between turbulence and controllability?, in 9th INRIA International Conference. Antibes (1990).
  15. J.-L. Lions, Exact controllability for distributed systems. Some trends and some problems, in Applied and industrial mathematics, Proc. Symp., Venice/Italy 1989. D. Reidel Publ. Co. Math. Appl. 56 (1991) 59-84.
  16. J.-L. Lions, On the controllability of distributed systems. Proc. Natl. Acad. Sci. USA 94 (1997) 4828-4835.
  17. J.-L. Lions and E. Zuazua, Approximate controllability of a hydro-elastic coupled system. ESAIM: COCV 1 (1995) 1-15. [CrossRef] [EDP Sciences]
  18. J.-L. Lions and E. Zuazua, Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV 26 (1998) 605-621.
  19. Li Ta Tsien and Yu Wen-Ci, Boundary value problems for quasilinear hyperbolic systems. Duke university, Durham, Math. Ser. V (1985).
  20. A. Majda, Compressible fluid flow and systems of conservation laws in several space variables. Sringer-Verlag, New York Berlin Heidelberg Tokyo, Appl. Math. Sci. 53 (1984).
  21. N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems. Preprint, CIT-CDS 00-004.
  22. A.J.C.B. de Saint-Venant, Théorie du mouvement non permanent des eaux, avec applications aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 53 (1871) 147-154.
  23. D. Serre, Systèmes de lois de conservations, I et II. Diderot Éditeur, Arts et Sciences, Paris, New York, Amsterdam (1996).
  24. E.D. Sontag, Control of systems without drift via generic loops. IEEE Trans. Automat. Control. 40 (1995) 1210-1219. [CrossRef] [MathSciNet]