Free access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 449 - 460
DOI http://dx.doi.org/10.1051/cocv:2003022
Published online 15 September 2003
  1. G. Allaire, Homogenization and Two-Scale Convergence. SIAM J. Math Anal. 23 (1992) 1482-1518. [CrossRef] [MathSciNet]
  2. G. Allaire and M. Amar, Boundary Layer Tails in Periodic Homogenization. ESAIM: COCV 4 (1999) 209-243. [CrossRef] [EDP Sciences]
  3. Y. Amirat and O. Bodart, Boundary Layer Correctors for the Solution of Laplace Equation in a Domain with Oscillating Boundary. J. Anal. Appl. 20 (2001) 929-940.
  4. N. Ansini and A. Braides, Homogenization of Oscillating Boundaries and Applications to Thin Films. J. Anal. Math. 83 (2001) 151-183. [CrossRef] [MathSciNet]
  5. D. Blanchard, L. Carbone and A. Gaudiello, Homogenization of a Monotone Problem in a Domain with Oscillating Boundary. ESAIM: M2AN 33 (1999) 1057-1070. [CrossRef] [EDP Sciences]
  6. R. Brizzi and J.P. Chalot, Boundary Homogenization and Neumann Boundary Value Problem. Ricerche Mat. 46 (1997) 341-387. [MathSciNet]
  7. G. Buttazzo and R.V. Kohn, Reinforcement by a Thin Layer with Oscillating Thickness. Appl. Math. Optim. 16 (1987) 247-261. [CrossRef] [MathSciNet]
  8. G.A. Chechkin, A. Friedman and A.L. Piatniski, The Boundary Value Problem in a Domain with Very Rapidly Oscillating Boundary. J. Math. Anal. Appl. 231 (1999) 213-234. [CrossRef] [MathSciNet]
  9. P.G. Ciarlet and P. Destuynder, A Justification of the Two-Dimensional Linear Plate Model. J. Mécanique 18 (1979) 315-344.
  10. D. Cioranescu and J. Saint Jean Paulin, Homogenization in Open Sets with Holes. J. Math. Anal. Appl. 71 (1979) 590-607. [CrossRef] [MathSciNet]
  11. A. Corbo Esposito, P. Donato, A. Gaudiello and C. Picard, Homogenization of the p-Laplacian in a Domain with Oscillating Boundary. Comm. Appl. Nonlinear Anal. 4 (1997) 1-23.
  12. A. Gaudiello, Asymptotic Behaviour of non-Homogeneous Neumann Problems in Domains with Oscillating Boundary. Ricerche Mat. 43 (1994) 239-292. [MathSciNet]
  13. A. Gaudiello, Homogenization of an Elliptic Transmission Problem. Adv. Math Sci. Appl. 5 (1995) 639-657. [MathSciNet]
  14. A. Gaudiello, B. Gustafsson, C. Lefter and J. Mossino, Asymptotic Analysis for Monotone Quasilinear Problems in Thin Multidomains. Differential Integral Equations 15 (2002) 623-640. [MathSciNet]
  15. A. Gaudiello, R. Hadiji and C. Picard, Homogenization of the Ginzburg-Landau Equation in a Domain with Oscillating Boundary. Commun. Appl. Anal. (to appear).
  16. A. Gaudiello, R. Monneau, J. Mossino, F. Murat and A. Sili, On the Junction of Elastic Plates and Beams. C. R. Acad. Sci. Paris Sér. I 335 (2002) 717-722.
  17. H. Le Dret, Problèmes variationnels dans les multi-domaines : modélisation des jonctions et applications. Masson, Paris (1991).
  18. J.L. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Paris (1969).
  19. T.A. Mel'nyk, Homogenization of the Poisson Equations in a Thick Periodic Junction. ZAA J. Anal. Appl. 18 (1999) 953-975.
  20. T.A. Mel'nyk and S.A. Nazarov, Asymptotics of the Neumann Spectral Problem Solution in a Domain of ``Thick Comb" Type. J. Math. Sci. 85 (1997) 2326-2346. [CrossRef] [MathSciNet]
  21. G. Nguetseng, A General Convergence Result for a Functional Related to the Theory of Homogenization. SIAM J. Math Anal. 20 (1989) 608-623. [CrossRef] [MathSciNet]
  22. L. Tartar, Cours Peccot, Collège de France (March 1977). Partially written in F. Murat, H-Convergence, Séminaire d'analyse fonctionnelle et numérique de l'Université d'Alger (1977-78). English translation in Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R.V. Kohn, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser-Verlag (1997) 21-44.