Free access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 207 - 216
DOI http://dx.doi.org/10.1051/cocv:2003010
Published online 15 September 2003
  1. Z. Artstein, Stability in the presence of singular perturbations. Nonlinear Anal. TMA 34 (1998) 817-827. [CrossRef]
  2. Z. Artstein and V. Gaitsgory, Tracking fast trajectories along a slow dynamics: A singular perturbations approach. SIAM J. Control Optim. 35 (1997) 1487-1507. [MathSciNet]
  3. I.U. Bronstein and A.Ya. Kopanskii, Smooth Invariant Manifolds and Normal Forms. World Scientific (1994).
  4. F. Colonius and W. Kliemann, The Dynamics of Control. Birkhäuser (2000).
  5. F. Colonius and W. Kliemann, On dynamic bifurcations in control systems, in Proc. IFAC Symposium on Nonlinear Control Systems (NOLCOS '01), 4-6 July 2001. St. Petersburg, Russia (2001) 140-143.
  6. J. Fischer, R. Guder and E. Kreuzer, Analyzing Perturbed Nonlinear Dynamical Systems, in Proc. 9th German-Japanese Seminar ``Nonlinear Problems in Dynamical Systems''. Straelen, Germany (to appear).
  7. G. Grammel, Averaging of singularly perturbed systems. Nonlinear Anal. TMA 28 (1997) 1855-1865.
  8. G. Grammel and P. Shi, On the asymptotics of the Lyapunov spectrum under singular perturbations. IEEE Trans. Automat. Control 45 (2000) 565-568. [CrossRef] [MathSciNet]
  9. S.M. Grünvogel, Lyapunov Spectrum and Control Sets, Dissertation Universität Augsburg. Augsburger Mathematische Schriften No. 34, Wißner Verlag, Augsburg (2000).
  10. S.M. Grünvogel, Lyapunov exponents and control sets near singular points. J. Differential Equations (to appear).
  11. H.K. Khalil, Nonlinear Systems. Prentice Hall (1996).
  12. P.V. Kokotovic, H.K. Khalil and J. O'Reilly, Singular Perturbation Methods in Control: Analysis and Design. Academic Press (1986).
  13. M.S. Soliman and J.M.T. Thompson, Stochastic penetration of smooth and fractal basin boundaries under noise excitation. Dynam. Stability Systems 5 (1990) 281-298. [MathSciNet]
  14. D. Szolnoki, Algorithms for Reachability Problems, Dissertation. Institut für Mathematik, Universität Augsburg, Augsburg (2001).
  15. D. Szolnoki, Set oriented methods for computing reachable sets and control sets. Discrete Contin. Dynam. Systems Ser. B (submitted).
  16. A. Vigodner, Limits of singularly perturbed control problems with statistical dynamics of fast motions. SIAM J. Control Optim. 35 (1997) 1-28. [CrossRef] [MathSciNet]