Free access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 197 - 205
DOI http://dx.doi.org/10.1051/cocv:2003009
Published online 15 September 2003
  1. F. Abergel and R. Temam, On some control problems in fluid mechanics. Theoret. Comput. Fluid Dynam. 1 (1990) 303-325. [CrossRef]
  2. V. Barbu, Mathematical Methods in Optimization of Differential Systems. Kluwer, Dordrecht (1995).
  3. V. Barbu, Local controllability of Navier-Stokes equations. Adv. Differential Equations 6 (2001) 1443-1462. [MathSciNet]
  4. V. Barbu, The time optimal control of Navier-Stokes equations. Systems & Control Lett. 30 (1997) 93-100. [CrossRef] [MathSciNet]
  5. V. Barbu and S. Sritharan, Formula -control theory of fluid dynamics. Proc. Roy. Soc. London 454 (1998) 3009-3033. [CrossRef]
  6. V. Barbu and S. Sritharan, Flow invariance preserving feedback controller for Navier-Stokes equations. J. Math. Anal. Appl. 255 (2001) 281-307. [CrossRef] [MathSciNet]
  7. Th.R. Bewley and S. Liu, Optimal and robust control and estimation of linear path to transition. J. Fluid Mech. 365 (1998) 305-349. [CrossRef] [MathSciNet]
  8. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and Control of Infinite Dimensional Systems. Birkhäuser, Boston, Bassel, Berlin (1992).
  9. C. Cao, I.G. Kevrekidis and E.S. Titi, Numerical criterion for the stabilization of steady states of the Navier-Stokes equations. Indiana Univ. Math. J. 50 (2001) 37-96. [MathSciNet]
  10. P. Constantin and C. Foias, Navier-Stokes Equations. University of Chicago Press, Chicago, London (1989).
  11. J.M. Coron, On the controllability for the 2-D incompresssible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1996) 33-75.
  12. J.M. Coron, On the null asymptotic stabilization of the 2-D incompressible Euler equations in a simple connected domain. SIAM J. Control Optim. 37 (1999) 1874-1896. [CrossRef] [MathSciNet]
  13. J.M. Coron and A. Fursikov, Global exact controllability of the 2-D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429-448. [MathSciNet]
  14. O.A. Imanuvilov, Local controllability of Navier-Stokes equations. ESAIM: COCV 3 (1998) 97-131. [CrossRef] [EDP Sciences]
  15. O.A. Imanuvilov, On local controllability of Navier-Stokes equations. ESAIM: COCV 6 (2001) 49-97.
  16. I. Lasiecka and R. Triggianni, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Encyclopedia of Mathematics and its Applications. Cambridge University Press (2000).
  17. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis. SIAM Philadelphia (1983).