Free access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 231 - 246
DOI http://dx.doi.org/10.1051/cocv:2003006
Published online 15 September 2003
  1. S. Angenent and D.G. Aronson, The focusing problem for the radially symmetric porous medium equation. Comm. Partial Differential Equations 20 (1995) 1217-1240. [CrossRef] [MathSciNet]
  2. D.G. Aronson, The Porous Medium Equation. Springer-Verlag, Berlin/New York, Lecture Notes in Math. 1224 (1985).
  3. D.G. Aronson, O. Gil and J.L. Vázquez, Limit behaviour of focusing solutions to nonlinear diffusions. Comm. Partial Differential Equations 23 (1998) 307-332. [MathSciNet]
  4. D.G. Aronson and J. Graveleau, A selfsimilar solution to the focusing problem for the porous medium equation. Euro. J. Appl. Math. 4 (1992) 65-81.
  5. D.G. Aronson and J.L. Vázquez, The porous medium equation as a finite-speed approximation to a Hamilton-Jacobi equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987) 203-330.
  6. H. Brezis, L.A. Peletier and D. Terman, A very singular solution of the heat equation with absorption. Arch. Rational Mech. Anal. 95 (1986) 185-209. [MathSciNet]
  7. J. Carr, Applications of centre manifold theory. Springer-Verlag, New York-Berlin, Appl. Math. Sci. 35 (1981) vi+142 pp.
  8. M. Chaves and V. Galaktionov, On the focusing problem for the PME with absorption. A geometrical approach (in preparation).
  9. J.I. Díaz, Nonlinear partial differential equations and free boundaries. Vol. I. Elliptic equations. Pitman (Advanced Publishing Program), Boston, MA, Res. Notes in Math. 106 (1985).
  10. J.I. Díaz and A. Li nán, On the asymptotic behaviour for a damped oscillator under a sublinear friction. Rev. Acad. Cien. Ser. A Mat. 95 (2001) 155-160.
  11. R. Ferreira and J.L. Vázquez, Self-similar solutions to a very fast diffusion equation. Adv. Differential Equations (to appear).
  12. V.A. Galaktionov, S.I. Shmarev and J.L. Vázquez, Second-order interface equations for nonlinear diffusion with very strong absorption. Commun. Contemp. Math. 1 (1999) 51-64. [CrossRef] [MathSciNet]
  13. V.A. Galaktionov, S.I. Shmarev and J.L. Vázquez, Behaviour of interfaces in a diffusion-absorption equation with critical exponents. Interfaces Free Bound. 2 (2000) 425-448. [CrossRef] [MathSciNet]
  14. V.A. Galaktionov, S.I. Shmarev and J.L. Vázquez, Regularity of interfaces in diffusion processes under the influence of strong absorption. Arch. Ration. Mech. Anal. 149 (1999) 183-212. [CrossRef] [MathSciNet]
  15. J. Guckenheimer and Ph. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Revised and corrected reprint of the 1983 original. Springer-Verlag, New York, Appl. Math. Sci. 42 (1990).
  16. A. Haraux, Comportement à l'infini pour certains systèmes non linéaires. Proc. Roy. Soc. Edinburgh Ser. A 84 (1979) 213-234.
  17. M.W. Hirsch and S. Smale, Differential equations, dynamical systems, and linear algebra. Academic Press, New York-London, Pure Appl. Math. 60 (1974).
  18. S. Kamin, L.A. Peletier and J.L. Vázquez, A nonlinear diffusion-absorption equation with unbounded initial data, in Nonlinear diffusion equations and their equilibrium states, Vol. 3. Gregynog (1989) 243-263. Birkhäuser Boston, Boston, MA, Progr. Nonlinear Differential Equations Appl. 7 (1992).
  19. E.B. Lee and L. Markus, Foundations of Optimal Control Theory. J. Wiley and Sons, New York, SIAM Ser. Appl. Math. (1967).
  20. O.A. Oleinik, A.S. Kalashnikov and Y.-I. Chzou, The Cauchy problem and boundary problems for equations of the type of unsteady filtration. Izv. Akad. Nauk SSR Ser. Mat. 22 (1958) 667-704.
  21. L. Perko, Differential equations and dynamical systems, Third edition. Springer-Verlag, New York, Texts in Appl. Math. 7 (2001).
  22. J.L. Vázquez, An Introduction to the Mathematical Theory of the Porous Medium Equation, in Shape Optimization and Free Boundaries, edited by M.C. Delfour. Kluwer Ac. Publ., Dordrecht, Boston and Leiden, Math. Phys. Sci. Ser. C 380 (1992) 347-389.