Free access
Issue
ESAIM: COCV
Volume 9, March 2003
Page(s) 275 - 296
DOI http://dx.doi.org/10.1051/cocv:2003013
Published online 15 September 2003
  1. J.R. Cannon, The one-dimensional heat equation. Addison-Wesley Publishing Company, Encyclopedia Math. Appl. 23 (1984).
  2. M. Fila and P. Souplet, Existence of global solutions with slow decay and unbounded free boundary for a superlinear Stefan problem. Interfaces Free Boundaries 3 (2001) 337-344.
  3. M. Fliess, J. Lévine, Ph. Martin and P. Rouchon, Flatness and defect of nonlinear systems: Introductory theory and examples. Int. J. Control 61 (1995) 1327-1361. [CrossRef] [MathSciNet]
  4. M. Fliess, J. Lévine, Ph. Martin and P. Rouchon, A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Trans. Automat. Control 44 (1999) 922-937. [CrossRef] [MathSciNet]
  5. A. Friedman and B. Hu, A Stefan problem for multidimensional reaction-diffusion systems. SIAM J. Math. Anal. 27 (1996) 1212-1234. [CrossRef] [MathSciNet]
  6. M. Gevrey, La nature analytique des solutions des équations aux dérivées partielles. Ann. Sci. École Norm. Sup. 25 (1918) 129-190.
  7. C.D. Hill, Parabolic equations in one space variable and the non-characteristic Cauchy problem. Comm. Pure Appl. Math. 20 (1967) 619-633. [CrossRef] [MathSciNet]
  8. Chen Hua and L. Rodino, General theory of partial differential equations and microlocal analysis, in Proc. of the workshop on General theory of PDEs and Microlocal Analysis, International Centre for Theoretical Physics, Trieste, edited by Qi Min-You and L. Rodino. Longman (1995) 6-81.
  9. B. Laroche, Ph. Martin and P. Rouchon, Motion planing for the heat equation. Int. J. Robust Nonlinear Control 10 (2000) 629-643. [CrossRef]
  10. A.F. Lynch and J. Rudolph, Flatness-based boundary control of a nonlinear parabolic equation modelling a tubular reactor, edited by A. Isidori, F. Lamnabhi-Lagarrigue and W. Respondek. Springer, Lecture Notes in Control Inform. Sci. 259: Nonlinear Control in the Year 2000, Vol. 2. Springer (2000) 45-54.
  11. M.B. Milam, K. Mushambi and R.M. Murray, A new computational approach to real-time trajectory generation for constrained mechanical systems, in IEEE Conference on Decision and Control (2000).
  12. N. Petit, M.B. Milam and R.M. Murray, A new computational method for optimal control of a class of constrained systems governed by partial differential equations, in Proc. of the 15th IFAC World Congress (2002).
  13. M. Petkovsek, H.S. Wilf and D. Zeilberger, A = B. Wellesley (1996).
  14. L.I. Rubinstein, The Stefan problem. AMS, Providence, Rhode Island, Transl. Math. Monogr. 27 (1971).
  15. W. Rudin, Real and Complex Analysis. McGraw-Hill International Editions, Third Edition (1987).