Free access
Issue
ESAIM: COCV
Volume 10, Number 1, January 2004
Page(s) 53 - 83
DOI http://dx.doi.org/10.1051/cocv:2003032
Published online 15 February 2004
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Claredon Press, Oxford Math. Monogr. (2000).
  2. A.H.T. Banks, N.J. Lybeck, B. Munoz and L. Yanyo, Nonlinear Elastomers: Modeling and Estimation, in Proc. of the “Third IEEE Mediterranean Symposium on New Directions in Control and Automation”, Vol. 1. Limassol, Cyprus (1995) 1-7.
  3. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North Holland, Stud. Math. Appl. 5 (1978).
  4. A. Braides and A. Defranceschi, Homogenization of Multiple Integrals. Oxford University Press, Oxford Lecture Ser. Math. Appl. 12 (1998).
  5. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman Scientific & Technical, Pitman Res. Notes Math. Ser. 207 (1989).
  6. L. Carbone, D. Cioranescu, R. De Arcangelis and A. Gaudiello, An Approach to the Homogenization of Nonlinear Elastomers via the Theory of Unbounded Functionals. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 283-288.
  7. L. Carbone, D. Cioranescu, R. De Arcangelis and A. Gaudiello, Homogenization of Unbounded Functionals and Nonlinear Elastomers. The General Case. Asymptot. Anal. 29 (2002) 221-272.
  8. L. Carbone, D. Cioranescu, R. De Arcangelis and A. Gaudiello, An Approach to the Homogenization of Nonlinear Elastomers in the Case of the Fixed Constraints Set. Rend. Accad. Sci. Fis. Mat. Napoli (4) 67 (2000) 235-244. [MathSciNet]
  9. L. Carbone and R. De Arcangelis, On Integral Representation, Relaxation and Homogenization for Unbounded Functionals. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8 (1997) 129-135. [MathSciNet]
  10. L. Carbone and R. De Arcangelis, On the Relaxation of Some Classes of Unbounded Integral Functionals. Matematiche 51 (1996) 221-256; Special Issue in honor of Francesco Guglielmino.
  11. L. Carbone and R. De Arcangelis, Unbounded Functionals: Applications to the Homogenization of Gradient Constrained Problems. Ricerche Mat. 48-Suppl. (1999) 139-182.
  12. L. Carbone and R. De Arcangelis, On the Relaxation of Dirichlet Minimum Problems for Some Classes of Unbounded Integral Functionals. Ricerche Mat. 48 (1999) 347-372; Special Issue in memory of Ennio De Giorgi. [MathSciNet]
  13. L. Carbone and R. De Arcangelis, On the Unique Extension Problem for Functionals of the Calculus of Variations. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001) 85-106. [MathSciNet]
  14. L. Carbone and S. Salerno, Further Results on a Problem of Homogenization with Constraints on the Gradient. J. Analyse Math. 44 (1984/85) 1-20.
  15. D. Cioranescu and P. Donato, An Introduction to Homogenization. Oxford University Press, Oxford Lecture Ser. Math. Appl. 17 (1999).
  16. A. Corbo Esposito and R. De Arcangelis, The Lavrentieff Phenomenon and Different Processes of Homogenization. Comm. Partial Differential Equations 17 (1992) 1503-1538. [CrossRef] [MathSciNet]
  17. A. Corbo Esposito and R. De Arcangelis, Homogenization of Dirichlet Problems with Nonnegative Bounded Constraints on the Gradient. J. Analyse Math. 64 (1994) 53-96. [CrossRef]
  18. A. Corbo Esposito and F. Serra Cassano, A Lavrentieff Phenomenon for Problems of Homogenization with Constraints on the Gradient. Ricerche Mat. 46 (1997) 127-159. [MathSciNet]
  19. G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser-Verlag, Progr. Nonlinear Differential Equations Appl. 8 (1993).
  20. C. D'Apice, T. Durante and A. Gaudiello, Some New Results on a Lavrentieff Phenomenon for Problems of Homogenization with Constraints on the Gradient. Matematiche 54 (1999) 3-47.
  21. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975) 842-850. [MathSciNet]
  22. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Grundlehren Math. Wiss. 219 (1976).
  23. R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton Math. Ser. 28 (1972).
  24. L.R.G. Treloar, The Physics of Rubber Elasticity. Clarendon Press, Oxford, First Ed. (1949), Third Ed. (1975).
  25. W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Grad. Texts in Math. 120 (1989).