Free access
Issue
ESAIM: COCV
Volume 10, Number 1, January 2004
Page(s) 14 - 27
DOI http://dx.doi.org/10.1051/cocv:2003036
Published online 15 February 2004
  1. E. Acerbi, G. Buttazzo and F. Prinari, On the class of functionals which can be represented by a supremum. J. Convex Anal. 9 (2002) 225-236. [MathSciNet]
  2. G. Aronsson, Minimization Problems for the Functional Formula . Ark. Mat. 6 (1965) 33-53. [CrossRef] [MathSciNet]
  3. G. Aronsson, Minimization Problems for the Functional Formula . II. Ark. Mat. 6 (1966) 409-431. [CrossRef] [MathSciNet]
  4. G. Aronsson, Extension of Functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. [CrossRef] [MathSciNet]
  5. G. Aronsson, Minimization Problems for the Functional Formula . III. Ark. Mat. 7 (1969) 509-512. [CrossRef] [MathSciNet]
  6. E.N. Barron, Viscosity solutions and analysis in L. Nonlinear Anal. Differential Equations Control. Montreal, QC (1998) 1-60. Kluwer Acad. Publ., Dordrecht, NATO Sci. Ser. C Math. Phys. Sci. 528 (1999).
  7. E.N. Barron, R.R. Jensen and C.Y. Wang, Lower Semicontinuity of L functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2001) 495-517. [CrossRef] [MathSciNet]
  8. E.N. Barron, R.R. Jensen and C.Y. Wang, The Euler equation and absolute minimizers of L functionals. Arch. Rational Mech. Anal. 157 (2001) 255-283. [CrossRef]
  9. T. Bhattacharya, E. DiBenedetto and J. Manfredi, Limits as p → ∞ of Δpup = ƒ and related extremal problems, Some topics in nonlinear PDEs. Turin (1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue (1991) 15-68.
  10. H. Berliocchi and J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. [MathSciNet]
  11. M.G. Crandal and L.C. Evans, A remark on infinity harmonic functions, in Proc. of the USA-Chile Workshop on Nonlinear Analysis. Vina del Mar-Valparaiso (2000) 123-129. Electronic. Electron. J. Differential Equations Conf. 6. Southwest Texas State Univ., San Marcos, TX (2001).
  12. M.G. Crandal, L.C. Evans and R.F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. Partial Differential Equations 13 (2001) 123-139. [MathSciNet]
  13. B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1989).
  14. G. Dal Maso, An Introduction to Γ-Convergence. Birkhauser, Basel, Progr. in Nonlinear Differential Equations Appl. 8 (1993).
  15. G. Dal Maso and L. Modica, A general theory of variational functionals. Topics in functional analysis (1980–81) 149-221. Quaderni, Scuola Norm. Sup. Pisa, Pisa (1981).
  16. E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975) 842-850. [MathSciNet]
  17. A. Garroni, V. Nesi and M. Ponsiglione, Dielectric Breakdown: Optimal bounds. Proc. Roy. Soc. London Sect. A 457 (2001) 2317-2335. [CrossRef]
  18. M. Gori and F. Maggi, On the lower semicontinuity of supremal functional. ESAIM: COCV 9 (2003) 135. [EDP Sciences]
  19. R.R. Jensen, Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm of the Gradient. Arch. Rational Mech. Anal. 123 (1993) 51-74. [CrossRef] [MathSciNet]
  20. P. Juutinen, Absolutely Minimizing Lipschitz Extensions on a metric space. An. Ac. Sc. Fenn. Mathematica 27 (2002) 57-67.
  21. D. Kinderlehrer and P. Pedregal, Characterization of Young Measures Generated by Gradients. Arch. Rational Mech. Anal. 115 (1991) 329-365. [CrossRef] [MathSciNet]
  22. D. Kinderlehrer and P. Pedregal, Gradient Young Measures Generated by Sequences in Sobolev Spaces. J. Geom. Anal. 4(1994) 59-90. [CrossRef] [MathSciNet]
  23. S. Muller, Variational models for microstructure and phase transitions. Calculus of variations and geometric evolution problems. Cetraro (1996) 85-210. Springer, Berlin, Lecture Notes in Math. 1713 (1999).
  24. P. Pedregal, Parametrized measures and variational principles. Birkhäuser Verlag, Basel, Progr. in Nonlinear Differential Equations Appl. 30 (1997).