Free access
Issue
ESAIM: COCV
Volume 10, Number 1, January 2004
Page(s) 142 - 167
DOI http://dx.doi.org/10.1051/cocv:2003040
Published online 15 February 2004
  1. F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726.
  2. F. Alouges and B.D. Coleman, Numerical bifurcation of equilibria of nematic crystals between non-co-axial cylinders. Math. Models Methods Appl. Sci. 11 (2001) 459–473.
  3. D. Braess, Finite elements, in Theory, fast solvers, and applications in solid mechanics. Translated from the 1992 German edition by Larry L. Schumaker. Cambridge University Press, Cambridge, 2nd edn. (2001).
  4. H. Brézis, Analyse fonctionnelle. Masson (1996).
  5. H. Brézis and J.-M. Coron, Large solutions for harmonic maps in two dimensions. Comm. Math. Phys. 92 (1983) 203–215.
  6. K.-C. Chang, W.-Y. Ding and R. Ye, Finite-time blow up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36 (1992) 507–515.
  7. P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson (1988).
  8. P.-G. De Gennes and J. Prost, The physics of liquid crystals. Clarendon Press, Oxford (1993).
  9. R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients. Comput. J. 7 (1994) 149–154.
  10. M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. I. Springer-Verlag, Berlin (1998).
  11. M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. II. Springer-Verlag, Berlin (1998).
  12. R.M. Hardt, Singularities of harmonic maps. Bull. Amer. Math. Soc. (N.S.) 34 (1997) 15–34.
  13. E. Hebey, Introduction à l'analyse non linéaire sur les variétés. Diderot Editeur Arts et Sciences (1987).
  14. F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 519–524.
  15. F. Hélein, Symétries dans les problèmes variationnels et applications harmoniques. Istituti Editoriali e Poligrafici Internazionali, Pisa-Roma (1998).
  16. J. Jost, Harmonic mappings betwenn surfaces. Springer-verlag, Lecture Notes in Math. 1062 (1984).
  17. W.P.A Klingenberg, Riemannian Geometry. Walter de Gruyter (1995).
  18. E. Kuwert, Minimizing the energy of maps from a surface into a 2-sphere with prescribed degree and boundary values. Manuscripta Math. 83 (1994) 31–38.
  19. L. Lemaire, Applications harmoniques de surfaces riemanniennes. J. Differ. Geom. 13 (1978) 51–78.
  20. A. Lichnewsky, Une méthode de gradient conjugué sur des variétés : application à certains problèmes de valeurs propres non linéaires. Numer. Funct. Anal. Optim. 1 (1979) 515–560.
  21. P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 2. Rev. Mat. Iberoamericana 1 (1985) 45–121.
  22. C.B. Morrey, Multiple integrals in the calculus of variations. Springer, New York (1966).
  23. J.W. Neuberger, Sobolev gradients and boundary conditions for partial differential equations, in Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), Amer. Math. Soc., Providence, RI. Contemp. Math. 204 (1997) 171–181
  24. E. Polak, Optimization, Appl. Math. Sci. 124 (1997).
  25. J. Qing, Remark on the Dirichlet problem for harmonic maps from the disc into the 2-sphere. Proc. R. Soc. Edinb. 122A (1992) 63–67.
  26. J. Qing, Boundary regularity of weakly harmonic maps from surfaces. J. Funct. Anal. 114 (1993) 63–67.
  27. R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps. J. Dif. Geom. 18 (1983) 253–268.
  28. J.R. Shewchuk, Triangle: engineering a 2d quality mesh generator and delaunay triangulator. http://www-2.cs.cmu.edu/quake/triangle.html.
  29. J.R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain. http://www-2.cs.cmu.edu/jrs/jrspapers.html#cg (1994).
  30. A. Soyeur, The Dirichlet problem for harmonic maps from the disc into the 2-sphere. Proc. R. Soc. Edinb. 113A (1989) 229–234.