Free access
Issue
ESAIM: COCV
Volume 10, Number 2, April 2004
Page(s) 259 - 270
DOI http://dx.doi.org/10.1051/cocv:2004006
Published online 15 March 2004
  1. R.A. Brooks and T. Lozano-Pérez, A subdivision algorithm in configuration space for findpath with rotation. IEEE Systems, Man and Cybernetics 15 (1985) 224-233.
  2. M. Broucke, A geometric approach to bisimulation and verification of hybrid systems, in HSCC 1999, LNCS, F.W. Vaandragerand and J.H. van Schuppen Eds., Springer 1569 (1999) 61-75.
  3. M. Broucke, M.D. Di Benedetto, S. Di Gennaro and A. Sangiovanni-Vincentelli, Theory of optimal control using bisimulations, in HSCC 2000, LNCS, N. Lynch and B. Krogh Eds., Springer 1790 (2000) 89-102.
  4. M. Broucke, M.D. Di Benedetto, S. Di Gennaro and A. Sangiovanni-Vincentelli, Optimal control using bisimulations: Implementation, in HSCC 2001, LNCS, M.D. Di Benedetto and A. Sangiovanni-Vincentelli Eds., Springer 2034 (2001) 175-188.
  5. T.H. Cormen, C.E. Leierson and R.L. Rivest, Introduction to Algorithms. Cambridge, Mass. MIT Press, New York McGraw-Hill (1990).
  6. M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer. Math. 75 (1997) 293-317. [CrossRef] [MathSciNet]
  7. M. Dellnitz, G. Froyland and O. Junge, The algorithms behind GAIO – Set oriented numerical methods for dynamical systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler Ed., Springer (2001) 145-174.
  8. E.W. Dijkstra, A Note on Two Problems in Connection with Graphs. Numer. Math. 5 (1959) 269-271. [CrossRef] [MathSciNet]
  9. M. Falcone, Numerical solution of Dynamic Programming equations, in Viscosity solutions and deterministic optimal control problems, M. Bardi and I. Capuzzo Dolcetta Eds., Birkhäuser (1997).
  10. Z. Galias, Interval methods for rigorous investigations of periodic orbits. Int. J. Bifur. Chaos 11 (2001) 2427-2450. [CrossRef]
  11. L. Grüne, An Adaptive Grid Scheme for the discrete Hamilton-Jacobi-Bellman Equation. Numer. Math. 75 (1997) 319-337. [CrossRef] [MathSciNet]
  12. P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, User's Guide for NPSOL (Version 4.0): a Fortran package for nonlinear programming, Report SOL 86-2, Systems Optimization Laboratory, Stanford University (1986).
  13. J. Hauser and H.M. Osinga, On the geometry of optimal control: the inverted pendulum example, in Proc. Amer. Control Conf., Arlington VA (2001) 1721-1726.
  14. A. Jadbabaie, J. Yu and J. Hauser, Unconstrained receding horizon control of nonlinear systems. IEEE Trans. Automat. Control 46 (2001) 776-783. [CrossRef] [MathSciNet]
  15. O. Junge, Rigorous discretization of subdivision techniques, in Proc. Int. Conf. Differential Equations Equadiff 99, B. Fiedler, K. Gröger and J. Sprekels Eds., World Scientific 2 (2000) 916-918.
  16. L.C. Polymenakos, D.P. Bertsekas and J.N. Tsitsiklis, Implementation of efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 43 (1998) 278-283. [CrossRef] [MathSciNet]
  17. K. Schiele, On the stabilization of a parametrically driven inverted double pendulum. Z. Angew. Math. Mech. 77 (1997) 143-146. [CrossRef] [MathSciNet]
  18. J.A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi equations. Proc. Nat. Acad. Sci. USA 98 (2001) 11069-11074. [CrossRef]
  19. E.D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Texts in Applied Mathematics 6, Springer (1998).
  20. D. Szolnoki, Viability kernels and control sets. ESAIM: COCV 5 (2000) 175-185. [CrossRef] [EDP Sciences]
  21. J.N. Tsitsiklis, Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 40 (1995) 1528-1538. [CrossRef] [MathSciNet]
  22. O. von Stryk, User's Guide for DIRCOL (Version 2.1): a direct collocation method for the numerical solution of optimal control problems. TU Darmstadt (2000).