Free access
Issue
ESAIM: COCV
Volume 10, Number 3, July 2004
Page(s) 381 - 408
DOI http://dx.doi.org/10.1051/cocv:2004010
Published online 15 June 2004
  1. P. Albano and P. Cannarsa, Lectures on Carleman estimates for elliptic and parabolic operators with applications (in preparation).
  2. S. Aniţa and V. Barbu, Null controllability of nonlinear convective heat equations. ESAIM: COCV 5 (2000) 157-173. [CrossRef] [EDP Sciences]
  3. V.R. Cabanillas, S.B. De Menezes and E. Zuazua, Null controllability in unbounded domains for the semilinear heat equation with nonlinearities involving gradient terms. J. Optim. Theory Appl. 110 (2001) 245-264.
  4. P. Cannarsa, P. Martinez and J. Vancostenoble, Nulle contrôlabilité régionale pour des équations de la chaleur dégénérées. Comptes Rendus Mécanique 330 (2002) 397-401. [CrossRef]
  5. L. De Teresa, Approximate controllability of a semilinear heat equation in Formula . SIAM J. Control Optim. 36 (1998) 2128-2147. [CrossRef] [MathSciNet]
  6. L. De Teresa and E. Zuazua, Approximate controllability of the semilinear heat equation in unbounded domains. Nonlinear Anal. TMA 37 (1999) 1059-1090.
  7. Sz. Dolecki and D.L. Russell, A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185-220. [CrossRef] [MathSciNet]
  8. C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinb. A 125 (1995) 185-220.
  9. H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rat. Mech. Anal. 4 (1971) 272-292.
  10. H.O. Fattorini and D.L. Russell, Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations. Quart. Appl. Math. 32 (1974) 45-69. [MathSciNet]
  11. E. Fernández-Cara, Null controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87-103. [CrossRef] [EDP Sciences] [MathSciNet]
  12. E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equations 5 (2000) 465-514.
  13. E. Fernández-Cara and E. Zuazua, Controllability for weakly blowing-up semilinear heat equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 583-616. [CrossRef] [MathSciNet]
  14. A.V. Fursikov and O. Yu Imanuvilov, Controllability of evolution equations, Seoul National University, Seoul, Korea. Lect. Notes Ser. 34 (1996).
  15. O. Yu. Imanuvilov, Boundary controllability of parabolic equations. Russian Acad. Sci. Sb. Math. 186 (1995) 109-132.
  16. B.F. Jones Jr., A fundamental solution for the heat equation which is supported in a strip. J. Math. Anal. Appl. 60 (1977) 314-324. [CrossRef] [MathSciNet]
  17. A. Khapalov, Mobile points controls versus locally distributed ones for the controllability of the semilinear parabolic equations. SIAM J. Control Optim. 40 (2001) 231-252. [CrossRef] [MathSciNet]
  18. I. Lasiecka and R. Triggiani, Carleman estimates and exact boundary controllability for a system of coupled, non conservative second order hyperbolic equations, in Partial Differential Equations Methods in Control and Shape Analysis. Marcel Dekker, New York, Lect. Notes Pure Appl. Math. 188 (1994) 215-243.
  19. G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur. Comm. Partial Differ. Equations 20 (1995) 335-356. [CrossRef] [MathSciNet]
  20. S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-line. Trans. Amer. Math. Soc. 353 (2001) 1635-1659. [CrossRef] [MathSciNet]
  21. S. Micu and E. Zuazua, On the lack of null controllability of the heat equation on the half-space. Portugaliae Math. 58 (2001) 1-24.
  22. L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line. SIAM J. Control Optim. 39 (2000) 331-351. [CrossRef] [MathSciNet]
  23. D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52 (1973) 189-221.
  24. D. Tataru, A priori estimates of Carleman's type in domains with boundary. J. Math. Pures Appl. 73 (1994) 355-387. [MathSciNet]
  25. D. Tataru, Carleman estimates and unique continuation near the boundary for P.D.E.'s. J. Math. Pures Appl. 75 367-408 ((1996).
  26. X. Zhang, A remark on null controllability of the heat equation. SIAM J. Control Optim. 40 (2001) 39-53. [CrossRef] [MathSciNet]
  27. E. Zuazua, Approximate controllability for the semilinear heat equation with globally Lipschitz nonlinearities. Control Cybern. 28 (1999) 665-683.