Free access
Issue
ESAIM: COCV
Volume 10, Number 3, July 2004
Page(s) 346 - 380
DOI http://dx.doi.org/10.1051/cocv:2004012
Published online 15 June 2004
  1. S.N. Antontsev, A.V. Kazhikov and V.N. Monakhov, Boundary values problems in mechanics of nonhomogeneous fluids. North-Holland, Amsterdam (1990).
  2. P. Benilan and R. Gariepy, Strong solutions in L1 of degenerate parabolic equations. J. Differ. Equations 119 (1995) 473-502. [CrossRef]
  3. J.L. Bona, M. Chen and J.-C. Saut, Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory. J. Nonlinear Sci. 12 (2002) 283-318. [CrossRef] [MathSciNet]
  4. J.L. Bona, S. Sun and B.-Y. Zhang, A Non-homogeneous Boundary-Value Problem for the Korteweg-de Vries Equation Posed on a Finite Domain. Commun. Partial Differ. Equations 28 (2003) 1391-1436. [CrossRef]
  5. J.L. Bona and R. Winther, The Korteweg-de Vries equation, posed in a quarter-plane. SIAM J. Math. Anal. 14 (1983) 1056-1106. [CrossRef] [MathSciNet]
  6. J.-M. Coron, On the controllability of the 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. [MathSciNet]
  7. J.-M. Coron, Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 513-554. [CrossRef] [EDP Sciences]
  8. E. Crépeau, Exact boundary controllability of the Korteweg-de Vries equation around a non-trivial stationary solution. Int. J. Control 74 (2001) 1096-1106. [CrossRef]
  9. E. Fernández-Cara, Null controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87-103. [CrossRef] [EDP Sciences] [MathSciNet]
  10. A.V. Fursikov and O.Y. Imanuvilov, On controllability of certain systems simulating a fluid flow, in Flow Control, M.D. Gunzburger Ed., Springer-Verlag, New York, IMA Vol. Math. Appl. 68 (1995) 149-184.
  11. T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equations. Stud. App. Math. 8 (1983) 93-128.
  12. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes, Vol. 1. Dunod, Paris (1968).
  13. G. Mathieu-Girard, Étude et contrôle des équations de la théorie “Shallow water” en dimension un. Ph.D. thesis, Université Paul Sabatier, Toulouse III (1998).
  14. S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation. SIAM J. Control Optim. 39 (2001) 1677-1696. [CrossRef] [MathSciNet]
  15. S. Micu and J.H. Ortega, On the controllability of a linear coupled system of Korteweg-de Vries equations. Mathematical and numerical aspects of wave propagation (Santiago de Compostela, 2000). Philadelphia, PA SIAM (2000) 1020-1024.
  16. S. Mottelet, Controllability and stabilization of a canal with wave generators. SIAM J. Control Optim. 38 (2000) 711-735. [CrossRef] [MathSciNet]
  17. S. Mottelet, Controllability and stabilization of liquid vibration in a container during transportation. (Preprint.)
  18. N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank systems. IEEE Trans. Automat. Control 47 (2002) 594-609. [CrossRef] [MathSciNet]
  19. L. Rosier, Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33-55, http://www.edpsciences.org/cocv [CrossRef] [EDP Sciences]
  20. L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation – a numerical study. ESAIM Proc. 4 (1998) 255-267, http://www.edpsciences.org/proc [CrossRef]
  21. L. Rosier, Exact boundary controllability for the linear Korteweg-de Vries equation on the half-line. SIAM J. Control Optim. 39 (2000) 331-351. [CrossRef] [MathSciNet]
  22. D.L. Russell and B.-Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain. SIAM J. Control Optim. 31 (1993) 659-673. [CrossRef] [MathSciNet]
  23. D.L. Russell and B.-Y. Zhang, Exact controllability and stabilizability of the Korteweg-de Vries equation. Trans. Amer. Math. Soc. 348 (1996) 3643-3672. [CrossRef] [MathSciNet]
  24. J. Simon, Compact Sets in the Space Formula . Ann. Mat. Pura Appl. (IV) CXLVI (1987) 65-96.
  25. G.B. Whitham, Linear and nonlinear waves. A Wiley-Interscience publication, Wiley, New York (1999) reprint of the 1974 original.
  26. E. Zeidler, Nonlinear functional analysis and its applications, Part 1. Springer-Verlag, New York (1986).
  27. B.-Y. Zhang, Exact boundary controllability of the Korteweg-de Vries equation. SIAM J. Control Optim. 37 (1999) 543-565. [CrossRef] [MathSciNet]