Free access
Issue
ESAIM: COCV
Volume 10, Number 4, October 2004
Page(s) 452 - 477
DOI http://dx.doi.org/10.1051/cocv:2004015
Published online 15 October 2004
  1. G. Alessandrini and V. Nesi, Univalent Formula -harmonic mappings. Arch. Ration. Mech. Anal. 158 (2001) 155-171. [CrossRef]
  2. G. Alessandrini and V. Nesi, Univalent Formula -harmonic mappings: applications to composites. ESAIM: COCV 7 (2002) 379-406. [CrossRef] [EDP Sciences]
  3. P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J. 50 (2001) (Spring).
  4. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland (1978).
  5. M. Briane, Correctors for the homogenization of a laminate. Adv. Math. Sci. Appl. 4 (1994) 357-379.
  6. M. Briane, G.W. Milton and V. Nesi, Change of sign of the corrector's determinant in three dimensions. Arch. Ration. Mech. Anal. To appear.
  7. A. Cherkaev, Variational methods for structural optimization. Appl. Math. Sci. 140 (2000).
  8. A. Cherkaev and L.V. Gibiansky, Extremal structures of multiphase heat conducting composites. Internat J. Solids Structures 33 (1996) 2609-2618. [CrossRef]
  9. L.V. Gibiansky and O. Sigmund, Multiphase composites with extremal bulk modulus. J. Mech. Phys. Solids 48 (2000) 461-498. [CrossRef] [MathSciNet]
  10. Z. Hashin and S. Shtrikman, A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962) 3125-3131. [CrossRef]
  11. K.A. Lurie and A.V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. R. Soc. Edinb. A 99 (1984) 71-87.
  12. K.A. Lurie and A.V. Cherkaev, The problem of formation of an optimal isotropic multicomponent composite. J. Opt. Theory Appl. 46 (1985) 571-589. [CrossRef] [MathSciNet]
  13. K.A. Lurie and A.V. Cherkaev, Exact estimates of the conductivity of a binary mixture of isotropic materials. Proc. R. Soc. Edinb. A 104 (1986) 21-38.
  14. G.W. Milton, Concerning bounds on transport and mechanical properties of multicomponent composite materials. Appl. Phys A 26 (1981) 125-130. [CrossRef]
  15. G.W. Milton and R.V. Kohn, Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988) 597-629. [CrossRef] [MathSciNet]
  16. F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1981) 69-102.
  17. F. Murat, H-convergence. Séminaire d'Analyse Fonctionnelle et Numérique (1977-78), Université d'Alger. English translation: Murat F. and Tartar L., H-convergence. Topics in the Mathematical Modelling of Composite Materials, L. Cherkaev and R.V. Kohn Ed., Birkaüser, Boston, Progr. Nonlinear Differential Equations Appl. (1998) 21-43.
  18. F. Murat and L. Tartar, Calcul des variations et homogénéisation, in Les Méthodes de l'homogénéisation : théorie et applications en physique. Eyrolles (1985) 319-369.
  19. V. Nesi, Using quasiconvex functionals to bound the effective conductivity of composite materials. Proc. R. Soc. Edinb. Sect. A 123 (1993) 633-679.
  20. V. Nesi, Bounds on the effective conductivity of Formula composites made of Formula isotropic phases in prescribed volume fractions: the weighted translation method. Proc. R. Soc. Edinb. A 125 (1995) 1219-1239.
  21. S. Spagnolo, Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Scuola Norm. Sup. Pisa 3 (1967) 657-699.
  22. S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa 3 (1968) 571-597.
  23. L. Tartar, Estimations de coefficients homogénéisés. Lect. Notes Math. 704 (1978) 364-373 [CrossRef]
  24. . English translation: Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials. Progr. Nonlinear Differ. Equ. Appl. 31 (1997) 9-20.
  25. L. Tartar, Estimations fines des coefficients homogénéisés, in Ennio De Giorgi's Colloquium, Paris, 1983, P. Kree Ed., Pitman, Boston (1985) 168-187.
  26. L. Tartar, Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, Heriot-Watt Symposium, Vol. IV, R.J. Knops Ed., Pitman, Boston (1979) 136-212.