Free access
Issue
ESAIM: COCV
Volume 10, Number 4, October 2004
Page(s) 526 - 548
DOI http://dx.doi.org/10.1051/cocv:2004018
Published online 15 October 2004
  1. C. Altafini, Geometric motion control for a kinematically redundant robotic chain: Application to a holonomic mobile manipulator. J. Rob. Syst. 20 (2003) 211-227. [CrossRef]
  2. V.I. Arnold, Math. methods of Classical Mechanics. 2nd ed., Grad. Texts Math. 60 (1989).
  3. L. Berard-Bergery, Sur la courbure des métriques Riemanniennes invariantes des groupes de Lie et des espaces homogènes. Ann. Sci. Ecole National Superior 11 (1978) 543.
  4. F. Bullo, N. Leonard and A. Lewis, Controllability and motion algorithms for underactuates Lagrangian systems on Lie groups. IEEE Trans. Autom. Control 45 (2000) 1437-1454. [CrossRef]
  5. F. Bullo and R. Murray, Tracking for fully actuated mechanical systems: a geometric framework. Automatica 35 (1999) 17-34. [CrossRef] [MathSciNet]
  6. M. Camarinha, F. Silva Leite and P. Crouch, Second order optimality conditions for an higher order variational problem on a Riemannian manifold, in Proc. 35th Conf. on Decision and Control. Kobe, Japan, December (1996) 1636-1641.
  7. E. Cartan, La géométrie des groupes de transformations, in Œuvres complètes 2, part I. Gauthier-Villars, Paris, France (1953) 673-792.
  8. H. Cendra, D. Holm, J. Marsden and T. Ratiu, Lagrangian reduction, the Euler-Poincaré equations and semidirect products. Amer. Math. Soc. Transl. 186 (1998) 1-25.
  9. M. Crampin and F. Pirani, Applicable differential geometry. London Mathematical Society Lecture notes. Cambridge University Press, Cambridge, UK (1986).
  10. P.E. Crouch and F. Silva Leite, The dynamic interpolation problem on Riemannian manifolds, Lie groups and symmetric spaces. J. Dynam. Control Syst. 1 (1995) 177-202. [CrossRef] [MathSciNet]
  11. M. do Carmo, Riemannian geometry. Birkhäuser, Boston (1992).
  12. L. Eisenhart, Riemannian geometry. Princeton University Press, Princeton (1966).
  13. V. Jurdjevic, Geometric Control Theory. Cambridge Stud. Adv. Math. Cambridge University Press, Cambridge, UK (1996).
  14. S. Kobayashi and K. Nomizu, Foundations of differential geometry I and II. Interscience Publisher, New York (1963) and (1969).
  15. J. Lee, Riemannian manifolds. An introduction to curvature. Springer, New York, NY (1997).
  16. A. Lewis and R. Murray, Configuration controllability of simple mechanical control systems. SIAM J. Control Optim. 35 (1997) 766-790. [CrossRef] [MathSciNet]
  17. A. Lewis and R. Murray, Decompositions for control systems on manifolds with an affine connection. Syst. Control Lett. 31 (1997) 199-205. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  18. J. Marsden, Lectures on Mechanics. Cambridge University Press, Cambridge (1992).
  19. J. Marsden and T. Ratiu, Introduction to mechanics and symmetry, Springer-Verlag, 2nd ed., Texts Appl. Math. 17 (1999).
  20. J. Milnor, Curvature of left invariant metrics on Lie groups. Adv. Math. 21 (1976) 293-329. [CrossRef]
  21. R. Murray, Z. Li and S. Sastry, A Mathematical Introduction to Robotic Manipulation. CRC Press (1994).
  22. L. Noakes, G. Heinzinger and B. Paden, Cubic splines on curved spaces. IMA J. Math. Control Inform. 12 (1989) 465-473. [CrossRef] [MathSciNet]
  23. K. Nomizu, Invariant affine connections on homogeneous spaces. Amer. J. Math. 76 (1954) 33-65. [CrossRef] [MathSciNet]
  24. F. Park and B. Ravani, Bézier curves on Riemannian manifolds and Lie groups with kinematic applications. ASME J. Mech. design 117 (1995) 36-40. [CrossRef]
  25. J. M. Selig, Geometrical methods in Robotics. Springer, New York, NY (1996).
  26. M. Zefran, V. Kumar and C. Croke, On the generation of smooth three-dimensional rigid body motions. IEEE Trans. Robot. Automat. 14 (1998) 576-589. [CrossRef]