Free access
Issue
ESAIM: COCV
Volume 10, Number 4, October 2004
Page(s) 553 - 573
DOI http://dx.doi.org/10.1051/cocv:2004020
Published online 15 October 2004
  1. F. Abergel and R. Temam, On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1 (1990) 303-325. [CrossRef]
  2. G.P. Agrawal, Nonlinear Fiber Optics. 2nd ed., Academic, San Diego, California (1995).
  3. T.R. Bewley, R. Temam and M. Ziane, A general framework for robust control in fluid mechanics. Physica D 138 (2000) 360-392. [CrossRef] [MathSciNet]
  4. R.W. Boyd, Nonlinear Optics. Academic, Boston (1992).
  5. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. Classics. Appl. Math. 28 (1999).
  6. M. Gunzburger, Adjoint equation-based methods for control problems in incompressible, viscous flows. Flow Turbul. Combust. 65 (2000) 249-272. [CrossRef] [MathSciNet]
  7. M. Gunzburger and O. Yu. Imanuvilov, Optimal control of stationary, Iow Mach number, highly nonisothermal, viscous flows. ESAIM: COCV 5 (2000) 477-500. [CrossRef] [EDP Sciences]
  8. M. Green and D.J.N. Limebeer, Linear robust control. Pretice-Hall (1995).
  9. C. Hu and R. Temam, Robust control of the Kuramoto-Sivashinsky equation. Dynam. Cont. Discrete Impuls Systems B 8 (2001) 315-338.
  10. J.L. Lions, Problèmes aux limites dans les equations aux dérivées partielles. Presses de l'Université de Montreal (1965), reedited in 2002 as part of [11].
  11. J.L. Lions, Selected work. 3 volumes, EDP Sciences, Paris, France (2003).
  12. M. Marion, Attractors for reaction-diffusion equations; Existence and estimate of their dimension. Appl. Anal. 25 (1987) 101-147. [CrossRef] [MathSciNet]
  13. J. Simon, Compact sets in space Formula . Ann. Mat. Pura Appl. 4 (1987) 67-96.
  14. R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1977), reedited in the series: AMS Chelsea, AMS Providence (2001).
  15. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Appl. Math. Sci. 68, Second augmented edition, Springer-Verlag, New York (1997).