Free access
Issue
ESAIM: COCV
Volume 11, Number 1, January 2005
Page(s) 88 - 101
DOI http://dx.doi.org/10.1051/cocv:2004032
Published online 15 December 2004
  1. L. Ambrosio and P. Tilli, Selected Topics on “Analysis on Metric Spaces”. Appunti dei Corsi Tenuti da Docenti della Scuola, Scuola Normale Superiore, Pisa (2000).
  2. G. Bouchitté and G. Buttazzo, Characterization of Optimal Shapes and Masses through Monge-Kantorovich Equation. J. Eur. Math. Soc. (JEMS) 3 (2001) 139–168. [CrossRef] [MathSciNet]
  3. A. Brancolini, Problemi di Ottimizzazione in Teoria del Trasporto e Applicazioni. Master's thesis, Università di Pisa, Pisa (2002). Available at http://www.sns.it/~brancoli/
  4. G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics Series 207. Longman Scientific & Technical, Harlow (1989).
  5. G. Buttazzo and L. De Pascale, Optimal Shapes and Masses, and Optimal Transportation Problems, in Optimal Transportation and Applications (Martina Franca, 2001). Lecture Notes in Mathematics, CIME series 1813, Springer-Verlag, Berlin (2003) 11–52.
  6. G. Buttazzo, E. Oudet and E. Stepanov, Optimal Transportation Problems with Free Dirichlet Regions, in Variational Methods for Discontinuous Structures (Cernobbio, 2001). Progress in Nonlinear Differential Equations and their Applications 51, Birkhäuser Verlag, Basel (2002) 41–65.
  7. G. Buttazzo and E. Stepanov, Optimal Transportation Networks as Free Dirichlet Regions for the Monge-Kantorovich Problem. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (2003) 631–678.
  8. G. Dal Maso and R. Toader, A Model for the Quasi-Static Growth of Brittle Fractures: Existence and Approximation Results. Arch. Rational Mech. Anal. 162 (2002) 101–135. [CrossRef] [MathSciNet]
  9. K.J. Falconer, The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (1986).
  10. L.V. Kantorovich, On the Transfer of Masses. Dokl. Akad. Nauk. SSSR (1942).
  11. L.V. Kantorovich, On a Problem of Monge. Uspekhi Mat. Nauk. (1948).
  12. G. Monge, Mémoire sur la théorie des Déblais et des Remblais. Histoire de l'Acad. des Sciences de Paris (1781) 666–704.
  13. S.J.N. Mosconi and P. Tilli, Γconvergence for the Irrigation Problem. Preprint Scuola Normale Superiore, Pisa (2003). Available at http://cvgmt.sns.it/